summaryrefslogtreecommitdiff
path: root/examples/llava
diff options
context:
space:
mode:
authorJohn <78893154+cmp-nct@users.noreply.github.com>2024-02-14 15:49:42 +0100
committerGitHub <noreply@github.com>2024-02-14 16:49:42 +0200
commitccbb277f4642fc0d84c72dbc0d51ed2df418d6ce (patch)
tree25a8f502509201132196b041c2dbf2bb69ff1bb1 /examples/llava
parent8084d554406b767d36b3250b3b787462d5dd626f (diff)
llava : update README.md (#5489)
* Update README.md * Update README.md * Update examples/llava/README.md --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'examples/llava')
-rw-r--r--examples/llava/README.md46
1 files changed, 42 insertions, 4 deletions
diff --git a/examples/llava/README.md b/examples/llava/README.md
index e2ef0eff..1d5374f2 100644
--- a/examples/llava/README.md
+++ b/examples/llava/README.md
@@ -1,10 +1,12 @@
# LLaVA
-Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants.
+Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants,
+as well as llava-1.6 [llava-v1.6](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2) variants.
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
models are available.
+For llava-1.6 a variety of prepared gguf models are available as well [7b-34b](https://huggingface.co/cmp-nct/llava-1.6-gguf)
After API is confirmed, more models will be supported / uploaded.
@@ -18,6 +20,7 @@ After building, run: `./llava-cli` to see the usage. For example:
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
+**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
## LLaVA 1.5
@@ -55,11 +58,46 @@ python ./convert.py ../llava-v1.5-7b
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
-## LLaVA 1.6
+## LLaVA 1.6 gguf conversion
+
+1) Backup your pth/safetensor model files as llava-surgery modifies them
+2) Use `python llava-surgery-v2.py -C -m /path/to/hf-model` which also supports llava-1.5 variants pytorch as well as safetensor models:
+- you will find a llava.projector and a llava.clip file in your model directory
+3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config.json)
+4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip_model_is_vision`
+- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
+5) Everything else as usual: convert.py the hf model, quantize as needed
+**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
+**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
+
+## llava-cli templating and llava-1.6 prompting
+
+llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`
+For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:
+
+**For Mistral and using llava-cli binary:**
+Add this: `-p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n"`
+The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role
+
+**For the 34B this should work:**
+Add this: `-e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n`
+
+
+## How to know if you are running in llava-1.5 or llava-1.6 mode
+
+When running llava-cli you will see a visual information right before the prompt is being processed:
+
+**Llava-1.5:**
+`encode_image_with_clip: image embedding created: 576 tokens`
+
+**Llava-1.6 (anything above 576):**
+`encode_image_with_clip: image embedding created: 2880 tokens`
+
+
+Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6
+
-- Use `llava-surgery-v2.py`
-- TODO: add detailed instructions
## TODO