diff options
author | Johannes Gäßler <johannesg@5d6.de> | 2024-03-23 01:24:36 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-23 01:24:36 +0100 |
commit | 50ccaf5eacb50a2ca378a4ef0dc7aeb45fead652 (patch) | |
tree | 3ebcfdadf96bb6f3aadd752a1bfe9771ac182d3b /examples/lookup/lookup.cpp | |
parent | 56a00f0a2f48a85376f48b5ce77699df781631ae (diff) |
lookup: complement data from context with general text statistics (#5479)
* lookup: evaluation tools, use corpus/previous gens
* fixup! lookup: evaluation tools, use corpus/previous gens
* fixup! lookup: evaluation tools, use corpus/previous gens
* fixup! lookup: evaluation tools, use corpus/previous gens
* fixup! lookup: evaluation tools, use corpus/previous gens
Diffstat (limited to 'examples/lookup/lookup.cpp')
-rw-r--r-- | examples/lookup/lookup.cpp | 116 |
1 files changed, 68 insertions, 48 deletions
diff --git a/examples/lookup/lookup.cpp b/examples/lookup/lookup.cpp index b53fae11..2e8c35de 100644 --- a/examples/lookup/lookup.cpp +++ b/examples/lookup/lookup.cpp @@ -1,12 +1,15 @@ -#include "common.h" #include "ggml.h" #include "llama.h" +#include "common.h" +#include "ngram-cache.h" #include <cmath> #include <cstdint> #include <cstdio> +#include <fstream> #include <string> #include <vector> +#include <unordered_map> int main(int argc, char ** argv){ gpt_params params; @@ -15,11 +18,7 @@ int main(int argc, char ** argv){ return 1; } - // max/min n-grams size to search for in prompt - const int ngram_max = 4; - const int ngram_min = 1; - - // length of the candidate / draft sequence, if match is found + // max. number of additional tokens to draft if match is found const int n_draft = params.n_draft; const bool dump_kv_cache = params.dump_kv_cache; @@ -39,6 +38,8 @@ int main(int argc, char ** argv){ // load the model std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_set_rng_seed(ctx, params.seed); + GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); // tokenize the prompt const bool add_bos = llama_should_add_bos_token(model); @@ -47,6 +48,35 @@ int main(int argc, char ** argv){ std::vector<llama_token> inp; inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); + llama_ngram_cache ngram_cache_context; + llama_ngram_cache ngram_cache_dynamic; + llama_ngram_cache ngram_cache_static; + int64_t t_draft_flat_us = 0; + int64_t t_draft_us = 0; + + { + // Fill up context ngram cache with tokens from user input: + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false); + + if (!params.lookup_cache_static.empty()) { + try { + ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static); + } catch (std::ifstream::failure const &) { + fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); + exit(1); + } + } + + if (!params.lookup_cache_dynamic.empty()) { + try { + ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic); + } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program + } + + t_draft_flat_us += ggml_time_us() - t_start_draft_us; + } + const int max_context_size = llama_n_ctx(ctx); const int max_tokens_list_size = max_context_size - 4; @@ -76,8 +106,6 @@ int main(int argc, char ** argv){ int n_drafted = 0; int n_accept = 0; - int64_t t_draft_us = 0; - int n_past = inp.size(); bool has_eos = false; @@ -129,6 +157,12 @@ int main(int argc, char ** argv){ ++n_past; ++i_dft; inp.push_back(id); + { + // Update context ngram cache with the newly accepted token: + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); + t_draft_us += ggml_time_us() - t_start_draft_us; + } if (params.use_color) { // color accepted draft token @@ -149,6 +183,12 @@ int main(int argc, char ** argv){ draft.clear(); draft.push_back(id); inp.push_back(id); + { + // Update context ngram cache with the newly accepted token: + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); + t_draft_us += ggml_time_us() - t_start_draft_us; + } break; } @@ -163,44 +203,19 @@ int main(int argc, char ** argv){ llama_batch_clear(batch_tgt); llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true); - // generate n_pred tokens through prompt lookup - auto prompt_lookup = [&]() -> void { - const int inp_size = inp.size(); - for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){ - const llama_token * ngram = &inp[inp_size - ngram_size]; - - for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) { - bool match = true; - for (int j = 0; j < ngram_size; ++j) { - if (inp[i + j] != ngram[j]) { - match = false; - break; - } - } - - if (match) { - const int startIdx = i + ngram_size; - const int endIdx = startIdx + n_draft; - if (endIdx < inp_size) { - for (int j = startIdx; j < endIdx; ++j) { - LOG(" - draft candidate %d: %d\n", j, inp[j]); - draft.push_back(inp[j]); - llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true); - ++n_drafted; - } - return; - } - } - } - } - return; - }; - + // Draft already contains a single token sampled from the model: + GGML_ASSERT(draft.size() == 1); + GGML_ASSERT(draft[0] == inp.back()); const int64_t t_start_draft_us = ggml_time_us(); - prompt_lookup(); + llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); + + for (size_t i = 1; i < draft.size(); ++i) { + llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true); + } t_draft_us += ggml_time_us() - t_start_draft_us; + n_drafted += draft.size() - 1; llama_decode(ctx, batch_tgt); ++n_past; @@ -210,19 +225,24 @@ int main(int argc, char ** argv){ auto t_dec_end = ggml_time_us(); + // Update dynamic ngram cache with context ngram cache and save it to disk: + llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); + llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic); + LOG_TEE("\n\n"); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_TEE("\n"); - LOG_TEE("n_draft = %d\n", n_draft); - LOG_TEE("n_predict = %d\n", n_predict); - LOG_TEE("n_drafted = %d\n", n_drafted); - LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", + LOG_TEE("n_draft = %d\n", n_draft); + LOG_TEE("n_predict = %d\n", n_predict); + LOG_TEE("n_drafted = %d\n", n_drafted); + LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); + LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); - LOG_TEE("n_accept = %d\n", n_accept); - LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); + LOG_TEE("n_accept = %d\n", n_accept); + LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_TEE("\ntarget:\n"); llama_print_timings(ctx); |