summaryrefslogtreecommitdiff
path: root/examples/quantize-stats
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2025-03-08 19:33:41 +0200
committerGitHub <noreply@github.com>2025-03-08 19:33:41 +0200
commit81748fb55e474ef1ddb3c64c14f7c378f0f6cd8b (patch)
treee36c0b1490b9e751086f1aa798596fc2710ff0b1 /examples/quantize-stats
parent3d85a1d66302989401f92a5ae347577b03cbdaa7 (diff)
Faster FlashMLA prompt processing (#246)
* FlashMLA-2: faster prompt processing The current MLA implementation computes wv_b * (k_cache * softmax(k_cache * (wk_b*q))) This leads to 3.4X more multiply-adds (madds) compared to standard attention. Due to the resulting tensor shapes, TG is still faster than standard attention because the k_cache*(wk_b*q) and k_cache*(softmax(k_cache * (wk_b*q))) multiplications become GEMMs, so the additional madds are more than compensated for due to the much higher performance of GEMMs compared to GEMVs. But for PP, where we are dealing with GEMMs in both cases, the additional madds needed for MLA lead to lower performance, with the performance gap increasing with context length. So, then, when we are dealing with PP, we can rearrange the above to (wv_b * k_cache) * softmax( (wk_b^T*k_cache) * q), thus transforming it into the standard attention mechanism. We do need two additional matrix multiplications (which in practice is done as a single wkv_b * k_cache GEMM) with the *entire* K cache. But this is still cheaper than MLA, as we end up with 1.8X the madds required by standard attention. Oh, these figures are for the DeepSeek-V3/R1/Lite attention architecture. This leads to a significant PP performance increase compared to standard MLA with FA. There are many upsides to this: * If we only apply the above trick when we are processing more than X tokens (with suitable chosen X), TG performance stays the same as MLA with FA * We still need to store just the K-cache, so 576 entries per layer for DeepSeek-V3/R1/Lite * We get significantly better PP performance * We can use MLA+FA on CUDA. It works already with this commit for PP, something is not yet quite right for TG. The downside is that it only works with fp16 cache (for now). This is so because we need to convert the cache to fp32, else we cannot do the wkv_b * k_cache matrix multiplication (which in ggml requires the second operand to be fp32). But converting (copying) to fp32 only works for f16, bf16 and f32 tensors, so no luck with quantized cache. Another reason that we need to convert to fp32 is that the cache contains the RoPE'd portion, which we need to concatenate to the result of the wkv_b * k_cache matrix multiplication. Also this op works only when the tensors being concatenated are both fp32. So much about ggml being a general purpose ML library. * FlashMLA-2: on the CPU it now works for quantized cache except for q8_KV (q8_KV has row meta data, and there is still some confusion with row sizes because of that). * FlashMLA-2: on the CPU it now works also with q8_KV --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/quantize-stats')
0 files changed, 0 insertions, 0 deletions