summaryrefslogtreecommitdiff
path: root/examples/quantize/quantize.cpp
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-03 12:59:22 +0100
committerGitHub <noreply@github.com>2024-12-03 12:59:22 +0100
commitc5bf589367cd609f4c0ff73a6534bbde7902abe8 (patch)
treefa17f82c717d535222c1843fc9fca2d66f4d6ea7 /examples/quantize/quantize.cpp
parentccec00939a30aa7762a232ac4dcadba985ef9ee4 (diff)
Q5_0_R4 (#121)
* Adding q5_0_r4 We get PP-512(LLaMA-3.1-8B) = 256.7 t/s on a Ryzen-7950X. We even get TG-128 improvement to 11.7 t/s from 11.1 t/s. * q5_0_r4: NEON We get PP-512(LLaMA-3.1-8B) = 99.6 t/s on M2-Max, up from 71.0 t/s for Q5_0. The difference to mainline llama.cpp is no longer funny: they get 26.5 t/s for Q5_0. For TG, we are nor able to fully saturate memory bandwidth and arrive at 22.1 t/s @ 8 threads. Mainline llama.cpp gets 20.6 t/s for Q5_0. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/quantize/quantize.cpp')
-rw-r--r--examples/quantize/quantize.cpp5
1 files changed, 3 insertions, 2 deletions
diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp
index 6cac41a2..b638107f 100644
--- a/examples/quantize/quantize.cpp
+++ b/examples/quantize/quantize.cpp
@@ -41,8 +41,9 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
{ "IQ4_NL_X4",LLAMA_FTYPE_MOSTLY_IQ4_NL_X4," 4.50 bpw non-linear quantization", },
- { "Q4_0_R4", LLAMA_FTYPE_MOSTLY_Q4_0_R4, " 4.50 bpw non-linear quantization", },
- { "Q8_0_R4", LLAMA_FTYPE_MOSTLY_Q8_0_R4, " 8.50 bpw non-linear quantization", },
+ { "Q4_0_R4", LLAMA_FTYPE_MOSTLY_Q4_0_R4, " 4.50 bpw quantization", },
+ { "Q5_0_R4", LLAMA_FTYPE_MOSTLY_Q5_0_R4, " 5.50 bpw quantization", },
+ { "Q8_0_R4", LLAMA_FTYPE_MOSTLY_Q8_0_R4, " 8.50 bpw quantization", },
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
{ "IQ4_KS", LLAMA_FTYPE_MOSTLY_IQ4_KS, " 4.25 bpw non-linear quantization", },
{ "IQ4_KSS", LLAMA_FTYPE_MOSTLY_IQ4_KSS, " 4.0 bpw non-linear quantization", },