summaryrefslogtreecommitdiff
path: root/examples/quantize
diff options
context:
space:
mode:
authorAndrew Chan <andrewkchan.akc@gmail.com>2025-05-22 23:17:52 -0700
committerGitHub <noreply@github.com>2025-05-23 09:17:52 +0300
commita1c931c30ce9c5618ec56fe93234110343111710 (patch)
tree1186fa100e56822f48d521be6df044db2fe428c0 /examples/quantize
parent3efdd6df67cbfb9e1723d68ce704717daf6a967c (diff)
Trellis quants with CPU inference (#441)
* WIP * WIP * WIP * Testing Trellis quantization Using 12 bits per 8 weights I get a better rmse than iq2_xxs. I still need to see how quantizing the group-of-8 scales will affect accuracy. By AVX2 SIMDifying the search for the best code, LLaMA-3.1-8B gets quantized in 130 seconds on the Ryzen-7950X CPU - sluggish but still acceptable. * Testing Trellis quantization: 4-bit quantized block scales rmse increases by just 3%, so this is beating iq2_xss in terms of rmse at the same 2.0625 bpw. * Testing Trellis quantization: playing with scales and generators * iq2_kt: quantize / dequantize I now see that I was comparing apples to oranges: iq2_xxs was using a weight of sigma^2/4 + x^2, while the Trellis approach wasn't (weight = 1). Once I use the same weight, iq2_kt is actually slightly worse than iq2_xxs in terms of rmse, so does not look promising at this point. Also, once each group of 8 Trellis values no longer has a constant sum(q^2) that we can precompute, quantization becomes significantly slower (476 seconds for LLaMA-3.1-8B). * iq2_kt: CUDA dequantize so we can run perplexity calcs. As already indicated by rmse, the 2-bit trellis approach is quite a bit worse than iq2_xxs. * WIP * WIP * WIP - try larger blocks With blocks of 32 and 16 bits per groups of 8 the brute force seach becomes prohibitive in terms of CPU time (30+ minutes for 8B LLaMA after SIMDifying with AVX2). The trick is to group the points in clusters, find the nearest cluster, and only search within the cluster. * iq2_kt - this is better Using blocks of 32 and 16 bits per group of 8 weights it beats iq2_xxs in terms of PPL by a significant margin. It is 0.0625 bpw larger, but even if we go to 15 bits per group od 8 (so 0.0625 bpw less than iq2_xxs), PPL is still lower. * iq2_kt - even better Re-quantize after determining block scales (at the epxense of much longer quantization time). * iq2_kt: CUDA dot product Implemented as DMMV. Very slow - just 81 t/s for LLaMA-3.1-8B. Then again, Q2_K_S with forced to use DMMV only gets 112 t/s vs 145 t/s via MMVQ. My memory is that when the DMMV kernels were properly maintained/used, DMMV was about on par with MMVQ for k-quants on my GPU. * iq2_kt: very slightly faster CUDA dot product * iq2_kt: f16 CUDA dot product We arrive at 112 t/s. * iq2_kt: faster f16 CUDA dot product We arrive at 139 t/s (no FA), and 149 t/s (FA). My RTX-4080 is ~20% slower than the RTX-6000 quoted in the QTIP repository, so with FA (which I'm sure they also used) we are at around ~180 t/s on their GPU, so almost matching their performance. * iq2_kt: faster f16 CUDA dot product We arrive at 146 t/s (no FA), and 158 t/s (FA). This is measured for LLaMA-3.1-8B with output.weight left as f16. * Minor * Adding iq3_kt 3.125 bpw. So far does not look good on the PPL vs bpw plot. * Forgotten change * WIP * WIP * iq3_kt WIP: slowly improving PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.8322, which is starting to be competitive/slightly better than other quants. * WIP * iq3_kt WIP: slowly improving PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.7892 * iq3_kt WIP: slowly improving PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.7689 after shrinking by 0.015 bpw by using iq4_k instead of q5_k for attn_v. * iq3_kt WIP: speed up quantization Nearly 60% improvement of quantization speed by having the points nelonging to a cluster copied to contiguous memory during initialization, and then accessed sequantially while searching for the closest point. LLaMA-3.1-8B now gets quantized in ~150 seconds on the Ryzen-5975WX. * iq3_kt speed up quantization Same trick as last commit applied to iq2_kt. Here we get an even larger speedup: quantization time on the Ryzen-5975WX for LLaMA-3.1-8B drops to 195 seconds from 375 seconds! * iq3_kt: CUDA dot product * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.2406 PPL(LLaMA-2-7B, 4096) = 6.4179 * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.1642 PPL(LLaMA-2-7B, 4096) = 6.3920 * Adding iq4_kt - not competitive at this point * WIP * WIP * iq4_kt: CUDA dot product * iq4_kt: minor tweaks * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.1642 PPL(LLaMA-2-7B, 4096) = 6.3920 * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.0297 PPL(LLaMA-2-7B, 4096) = 6.3913 Ah, quantization is faster too. About 20% faster. * iq3_kt: small improvements and faster quantization * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 8.9627 PPL(LLaMA-2-7B, 4096) = 6.3825 Quantization is faster too: ~200 seconds for LLaMA-3.1-8B on Ryzen-5975WX. * iq3_kt: small progress * WIP * iq4_kt: go to 4.0 bpw 15 bits per group of 4, plus 8 bit scales ifor blocks of 32. This gives a slightly better PPL than iq4_kss. * iq4_kt: very slightly better at the expense of much longer quantization time. * iq4_kt: failed attemt to adjust CUDA dot product It was working for 4.125 bpw. But after changing to 4.0 bpw there is something wrong and I don't see the bug. * DRY * DRY * iq4_kt: CUDA dot product works * DRY * Report actual bpw * Minor tweaks * Checkpoint Go to groups of 8 for iq3_kt. 2 x 8 = 16 bits for the magnitude plus 1 bpw for the sign. It goves a visible improvement in the PPL vs bpw plot, but that comes at the expense of much longer quantization time (7.5 minutes for LLaMA-3.1-8B on the Ryzen-5975WX). I also notices that the 3INST generator is not actually generating a Gaussian distribution. But going to a better generator means readjusting all the hyper-parameters, so leaving it for later. * WIP for IQ2_KT * WIP - working basic iq2_kt * still super slow (0.17t/s eval) * flatten 3inst iters + avx2 (0.3t/s eval) * iq3_kt (0.3t/s eval) and renames * wip buggy iq4_KT * fix (0.22t/s eval) * naming and remove unused fn * cleanup * more cleanup * delete unused and noncompiling mmvq functions * Some performance tweaks * Slighty faster iq2_kt * port Trellis struct to iq3_kt, iq4_kt * oops untracked files --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/quantize')
-rw-r--r--examples/quantize/quantize.cpp3
1 files changed, 3 insertions, 0 deletions
diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp
index b5277ec1..85ceabfd 100644
--- a/examples/quantize/quantize.cpp
+++ b/examples/quantize/quantize.cpp
@@ -46,6 +46,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q2_K_R4", LLAMA_FTYPE_MOSTLY_Q2_K_R4, "Q2_K_S repacked", },
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
{ "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
+ { "IQ3_KT", LLAMA_FTYPE_MOSTLY_IQ3_KT, " 3.125 bpw trellis quantization", },
+ { "IQ4_KT", LLAMA_FTYPE_MOSTLY_IQ4_KT, " 4.0 bpw trellis quantization", },
{ "IQ3_XXS_R4",LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4,"IQ3_XXS repacked", },
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
{ "IQ3_S_R4", LLAMA_FTYPE_MOSTLY_IQ3_S_R4, "IQ3_S repacked", },
@@ -73,6 +75,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "IQ2_K", LLAMA_FTYPE_MOSTLY_IQ2_K, " 2.375 bpw non-linear quantization",},
{ "IQ2_K_R4", LLAMA_FTYPE_MOSTLY_IQ2_K_R4, "IQ2_K repacked",},
{ "IQ2_KS", LLAMA_FTYPE_MOSTLY_IQ2_KS, " 2.1875 bpw non-linear quantization",},
+ { "IQ2_KT", LLAMA_FTYPE_MOSTLY_IQ2_KT, " 2.125 bpw trellis quantization", },
{ "IQ3_K", LLAMA_FTYPE_MOSTLY_IQ3_K, " 3.44 bpw non-linear quantization", },
{ "IQ3_K_R4", LLAMA_FTYPE_MOSTLY_IQ3_K_R4, "IQ3_K repacked", },
{ "IQ3_KL", LLAMA_FTYPE_MOSTLY_IQ3_KL, " 4 bpw non-linear quantization mix",},