diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /examples/server/server.cpp | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/server/server.cpp')
-rw-r--r-- | examples/server/server.cpp | 86 |
1 files changed, 61 insertions, 25 deletions
diff --git a/examples/server/server.cpp b/examples/server/server.cpp index f9a86961..7813a295 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -737,6 +737,8 @@ struct server_context { slot.ga_n = ga_n; slot.ga_w = ga_w; + slot.sparams = params.sparams; + slot.reset(); slots.push_back(slot); @@ -884,7 +886,8 @@ struct server_context { bool launch_slot_with_task(server_slot & slot, const server_task & task) { slot_params default_params; - llama_sampling_params default_sparams; + // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them) + llama_sampling_params default_sparams = params.sparams; auto & data = task.data; if (data.count("__oaicompat") != 0) { @@ -1179,7 +1182,7 @@ struct server_context { bool process_token(completion_token_output & result, server_slot & slot) { // remember which tokens were sampled - used for repetition penalties during sampling - const std::string token_str = llama_token_to_piece(ctx, result.tok, false); + const std::string token_str = llama_token_to_piece(ctx, result.tok, params.special); slot.sampled = result.tok; // search stop word and delete it @@ -2002,6 +2005,11 @@ struct server_context { int32_t n_batch = llama_n_batch(ctx); int32_t n_ubatch = llama_n_ubatch(ctx); + // track if this is an embedding or non-embedding batch + // if we've added sampled tokens above, we are in non-embedding mode + // -1: none, 0: non-embedding, 1: embedding + int32_t batch_type = batch.n_tokens > 0 ? 0 : -1; + // next, batch any pending prompts without exceeding n_batch if (params.cont_batching || batch.n_tokens == 0) { for (auto & slot : slots) { @@ -2020,6 +2028,7 @@ struct server_context { slot.t_start_generation = 0; if (slot.infill) { + const bool add_bos = llama_should_add_bos_token(model); bool suff_rm_leading_spc = true; if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { params.input_suffix.erase(0, 1); @@ -2035,16 +2044,21 @@ struct server_context { } prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model)); - prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS - prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model)); - prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); + suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model)); + + auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens; + auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens; + if (add_bos) { + embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); + } + embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); const llama_token middle_token = llama_token_middle(model); if (middle_token >= 0) { - prefix_tokens.push_back(middle_token); + embd_inp.push_back(middle_token); } - prompt_tokens = prefix_tokens; + prompt_tokens = embd_inp; } else { prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt } @@ -2166,6 +2180,14 @@ struct server_context { } } + // check that we are in the right batch_type, if not defer the slot + bool slot_type = slot.embedding ? 1 : 0; + if (batch_type == -1) { + batch_type = slot_type; + } else if (batch_type != slot_type) { + continue; + } + // keep only the common part int p0 = (int) system_tokens.size() + slot.n_past; if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) { @@ -2267,6 +2289,9 @@ struct server_context { {"n_tokens", batch.n_tokens}, }); + // make sure we're in the right embedding mode + llama_set_embeddings(ctx, batch_type == 1); + // process the created batch of tokens for (int32_t i = 0; i < batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); @@ -2599,24 +2624,16 @@ int main(int argc, char ** argv) { // if a custom chat template is not supplied, we will use the one that comes with the model (if any) if (params.chat_template.empty()) { if (!ctx_server.validate_model_chat_template()) { - LOG_ERROR("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); + LOG_WARNING("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); params.chat_template = "chatml"; } } // print sample chat example to make it clear which template is used { - json chat; - chat.push_back({{"role", "system"}, {"content", "You are a helpful assistant"}}); - chat.push_back({{"role", "user"}, {"content", "Hello"}}); - chat.push_back({{"role", "assistant"}, {"content", "Hi there"}}); - chat.push_back({{"role", "user"}, {"content", "How are you?"}}); - - const std::string chat_example = format_chat(ctx_server.model, params.chat_template, chat); - LOG_INFO("chat template", { - {"chat_example", chat_example}, - {"built_in", params.chat_template.empty()}, + {"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)}, + {"built_in", params.chat_template.empty()}, }); } @@ -2969,17 +2986,31 @@ int main(int argc, char ** argv) { }; const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) { + std::string template_key = "tokenizer.chat_template", curr_tmpl; + int32_t tlen = llama_model_meta_val_str(ctx_server.model, template_key.c_str(), nullptr, 0); + if (tlen > 0) { + std::vector<char> curr_tmpl_buf(tlen + 1, 0); + if (llama_model_meta_val_str(ctx_server.model, template_key.c_str(), curr_tmpl_buf.data(), curr_tmpl_buf.size()) == tlen) { + curr_tmpl = std::string(curr_tmpl_buf.data(), tlen); + } + } res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = { { "system_prompt", ctx_server.system_prompt.c_str() }, { "default_generation_settings", ctx_server.default_generation_settings_for_props }, - { "total_slots", ctx_server.params.n_parallel } + { "total_slots", ctx_server.params.n_parallel }, + { "chat_template", curr_tmpl.c_str() } }; res.set_content(data.dump(), "application/json; charset=utf-8"); }; const auto handle_completions = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) { + if (ctx_server.params.embedding) { + res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); + return; + } + res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = json::parse(req.body); @@ -3075,6 +3106,11 @@ int main(int argc, char ** argv) { }; const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error](const httplib::Request & req, httplib::Response & res) { + if (ctx_server.params.embedding) { + res_error(res, format_error_response("This server does not support chat completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); + return; + } + res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template); @@ -3147,6 +3183,11 @@ int main(int argc, char ** argv) { }; const auto handle_infill = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) { + if (ctx_server.params.embedding) { + res_error(res, format_error_response("This server does not support infill. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); + return; + } + res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = json::parse(req.body); @@ -3233,13 +3274,8 @@ int main(int argc, char ** argv) { return res.set_content(data.dump(), "application/json; charset=utf-8"); }; - const auto handle_embeddings = [¶ms, &ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) { + const auto handle_embeddings = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - if (!params.embedding) { - res.status = 501; - res.set_content("This server does not support embeddings. Start it with `--embeddings`", "text/plain; charset=utf-8"); - return; - } const json body = json::parse(req.body); bool is_openai = false; |