summaryrefslogtreecommitdiff
path: root/examples/speculative/speculative.cpp
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2023-09-03 15:12:08 +0300
committerGitHub <noreply@github.com>2023-09-03 15:12:08 +0300
commit47068e517004d90f13c16352bb3b4cafd53a00cd (patch)
tree259f1fb1184775dc250452d319c8006c0704ea22 /examples/speculative/speculative.cpp
parent8f429fa5111901f9646cf998643ac5310846d487 (diff)
speculative : PoC for speeding-up inference via speculative sampling (#2926)
* speculative : initial example * speculative : print encoding speed * speculative : add --draft CLI arg
Diffstat (limited to 'examples/speculative/speculative.cpp')
-rw-r--r--examples/speculative/speculative.cpp234
1 files changed, 234 insertions, 0 deletions
diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp
new file mode 100644
index 00000000..f0400c13
--- /dev/null
+++ b/examples/speculative/speculative.cpp
@@ -0,0 +1,234 @@
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+
+#include "build-info.h"
+
+#include "common.h"
+#include "llama.h"
+
+#include <cmath>
+#include <cstdio>
+#include <string>
+#include <vector>
+
+int main(int argc, char ** argv) {
+ gpt_params params;
+
+ if (gpt_params_parse(argc, argv, params) == false) {
+ return 1;
+ }
+
+ if (params.model_draft.empty()) {
+ fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
+ return 1;
+ }
+
+#ifndef LOG_DISABLE_LOGS
+ log_set_target(log_filename_generator("speculative", "log"));
+ LOG_TEE("Log start\n");
+ log_dump_cmdline(argc, argv);
+#endif // LOG_DISABLE_LOGS
+
+ // init llama.cpp
+ llama_backend_init(params.numa);
+
+ llama_model * model_tgt = NULL;
+ llama_model * model_dft = NULL;
+
+ llama_context * ctx_tgt = NULL;
+ llama_context * ctx_dft = NULL;
+
+ // load the target model
+ params.perplexity = true; // HACK: enable logits_all = true
+ std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
+
+ // load the draft model
+ params.model = params.model_draft;
+ std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
+
+ // tokenize the prompt
+ std::vector<llama_token> inp;
+ inp = ::llama_tokenize(ctx_tgt, params.prompt, true);
+
+ const int max_context_size = llama_n_ctx(ctx_tgt);
+ const int max_tokens_list_size = max_context_size - 4;
+
+ if ((int) inp.size() > max_tokens_list_size) {
+ fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
+ return 1;
+ }
+
+ fprintf(stderr, "\n\n");
+
+ for (auto id : inp) {
+ fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
+ }
+
+ fflush(stderr);
+
+ const int n_input = inp.size();
+
+ const auto t_enc_start = ggml_time_us();
+
+ // eval the prompt with both models
+ llama_eval(ctx_tgt, inp.data(), int(inp.size() - 1), 0, params.n_threads);
+ llama_eval(ctx_tgt, &inp.back(), 1, inp.size() - 1, params.n_threads);
+ llama_eval(ctx_dft, inp.data(), int(inp.size()), 0, params.n_threads);
+
+ const auto t_enc_end = ggml_time_us();
+
+ // the 2 models should have the same vocab
+ const int n_ctx = llama_n_ctx(ctx_tgt);
+ const int n_vocab = llama_n_vocab(ctx_tgt);
+ //GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft));
+
+ // how many tokens to draft each time
+ const int n_draft = params.n_draft;
+
+ int n_predict = 0;
+ int n_drafted = 0;
+ int n_accept = 0;
+
+ int n_past_tgt = inp.size();
+ int n_past_dft = inp.size();
+
+ std::vector<llama_token> drafted;
+
+ std::vector<llama_token> last_tokens(n_ctx);
+ std::fill(last_tokens.begin(), last_tokens.end(), 0);
+
+ for (auto & id : inp) {
+ last_tokens.erase(last_tokens.begin());
+ last_tokens.push_back(id);
+ }
+
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+
+ // used to determine end of generation
+ bool has_eos = false;
+
+ const auto t_dec_start = ggml_time_us();
+
+ while (true) {
+ LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
+
+ // sample from the drafted tokens if any
+ int i_dft = 0;
+ while (true) {
+ const llama_token id = llama_sample_token(ctx_tgt, NULL, NULL, params, last_tokens, candidates, i_dft);
+
+ last_tokens.erase(last_tokens.begin());
+ last_tokens.push_back(id);
+
+ //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens));
+
+ const std::string token_str = llama_token_to_piece(ctx_tgt, id);
+ printf("%s", token_str.c_str());
+ fflush(stdout);
+
+ if (id == llama_token_eos(ctx_tgt)) {
+ has_eos = true;
+ }
+
+ ++n_predict;
+
+ if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
+ LOG("drafted token %d accepted\n", id);
+ ++n_accept;
+ ++n_past_tgt;
+ ++n_past_dft;
+ ++i_dft;
+
+ continue;
+ }
+
+ // the drafted token was rejected or we are out of drafted tokens
+ llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads);
+ ++n_past_dft;
+
+ drafted.clear();
+ drafted.push_back(id);
+
+ break;
+ }
+
+ if (n_predict > params.n_predict || has_eos) {
+ break;
+ }
+
+ // sample n_draft tokens from the draft model picking the best token
+ int n_past_cur = n_past_dft;
+ for (int i = 0; i < n_draft; ++i) {
+ float * logits = llama_get_logits(ctx_dft);
+
+ candidates.clear();
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ }
+
+ llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
+
+ // computes softmax and sorts the candidates
+ llama_sample_softmax(ctx_dft, &cur_p);
+
+ for (int i = 0; i < 3; ++i) {
+ LOG(" - draft candidate %d: %d (%.3f)\n", i, cur_p.data[i].id, cur_p.data[i].p);
+ }
+
+ // too low probability, stop drafting
+ if (cur_p.data[0].p < 2*cur_p.data[1].p) {
+ break;
+ }
+
+ drafted.push_back(cur_p.data[0].id);
+ ++n_drafted;
+
+ if (i < n_draft - 1) {
+ // evaluate the drafted token on the draft model
+ llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads);
+ ++n_past_cur;
+ }
+ }
+
+ // evaluate the target model on the drafted tokens
+ llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads);
+ ++n_past_tgt;
+
+ drafted.erase(drafted.begin());
+ }
+
+ auto t_dec_end = ggml_time_us();
+
+ LOG_TEE("\n\n");
+
+ LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
+ LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
+
+ // TODO: make sure these numbers are computed correctly
+ LOG_TEE("\n");
+ LOG_TEE("n_draft = %d\n", n_draft);
+ LOG_TEE("n_predict = %d\n", n_predict);
+ LOG_TEE("n_drafted = %d\n", n_drafted);
+ LOG_TEE("n_accept = %d\n", n_accept);
+ LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
+
+ LOG_TEE("\ndraft:\n");
+ llama_print_timings(ctx_dft);
+
+ LOG_TEE("\ntarget:\n");
+ llama_print_timings(ctx_tgt);
+
+ llama_free(ctx_tgt);
+ llama_free_model(model_tgt);
+
+ llama_free(ctx_dft);
+ llama_free_model(model_dft);
+
+ llama_backend_free();
+
+ fprintf(stderr, "\n\n");
+
+ return 0;
+}