diff options
author | Georgi Gerganov <ggerganov@gmail.com> | 2023-10-18 16:21:57 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-10-18 16:21:57 +0300 |
commit | 0e89203b517c95ec6675eda75d200a60d1e8921d (patch) | |
tree | 3aba40ef0362d061f240bd43c52e86a8f728f89d /examples/speculative | |
parent | c67fe68e417f766970fb1feaf2e66458aa24116a (diff) |
speculative : add tree-based sampling example (#3624)
* sampling : one sequence per sampling context
ggml-ci
* speculative : add tree-based sampling support
ggml-ci
* speculative : reuse the n_parallel CLI param
* speculative : refactor sampling
* examples : fix build after sampling refactoring
ggml-ci
* batched : fix n_seq_id
* sampling : fix malloc
ggml-ci
* swift : fix build
ggml-ci
* swift : try to fix build
ggml-ci
* prompts : add assistant.txt
* common : add llama_batch_add() and llama_batch_clear() helpers
* speculative : minor refactor
ggml-ci
* minor : comments + rename
ggml-ci
* speculative : fix off-by-one for n_drafted
* speculative : fix the n_drafted fix + p constants
Diffstat (limited to 'examples/speculative')
-rw-r--r-- | examples/speculative/speculative.cpp | 367 |
1 files changed, 239 insertions, 128 deletions
diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 018dbf9a..53f42fad 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -2,13 +2,25 @@ #include "common.h" #include "llama.h" -#include "grammar-parser.h" #include <cmath> #include <cstdio> #include <string> #include <vector> +struct seq_draft { + bool active = false; + bool drafting = false; + bool skip = false; + + int i_batch_dft = 0; + std::vector<int> i_batch_tgt; + + std::vector<llama_token> tokens; + + struct llama_sampling_context * ctx_sampling; +}; + int main(int argc, char ** argv) { gpt_params params; @@ -21,6 +33,13 @@ int main(int argc, char ** argv) { return 1; } + // max number of parallel drafting sequences (i.e. tree branches) + const int n_seq_dft = params.n_parallel; + + // TODO: make this configurable + const float p_accept = 0.4f; + const float p_split = 0.3f; + #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("speculative", "log")); LOG_TEE("Log start\n"); @@ -77,8 +96,6 @@ int main(int argc, char ** argv) { const auto t_enc_end = ggml_time_us(); // the 2 models should have the same vocab - const int n_ctx = llama_n_ctx(ctx_tgt); - const int n_vocab = llama_n_vocab(model_tgt); //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft)); // how many tokens to draft each time @@ -91,60 +108,58 @@ int main(int argc, char ** argv) { int n_past_tgt = inp.size(); int n_past_dft = inp.size(); - std::vector<llama_token> drafted; - - std::vector<llama_token> last_tokens(n_ctx); - std::fill(last_tokens.begin(), last_tokens.end(), 0); - - for (auto & id : inp) { - last_tokens.erase(last_tokens.begin()); - last_tokens.push_back(id); - } - - std::vector<llama_token_data> candidates; - candidates.reserve(n_vocab); - // used to determine end of generation bool has_eos = false; - // grammar stuff - struct llama_grammar * grammar_dft = NULL; - struct llama_grammar * grammar_tgt = NULL; + // target model sampling context + struct llama_sampling_context * ctx_sampling = llama_sampling_init(params); - grammar_parser::parse_state parsed_grammar; + // draft sequence data + std::vector<seq_draft> drafts(n_seq_dft); - // if requested - load the grammar, error checking is omitted for brevity - if (!params.grammar.empty()) { - parsed_grammar = grammar_parser::parse(params.grammar.c_str()); - // will be empty (default) if there are parse errors - if (parsed_grammar.rules.empty()) { - return 1; - } + params.grammar.clear(); // the draft samplers will copy the target sampler's grammar + params.sampling_params.temp = 1.0f; // the draft samplers use default temperature - std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules()); - grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); + for (int s = 0; s < n_seq_dft; ++s) { + drafts[s].ctx_sampling = llama_sampling_init(params); } - llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar_tgt); + llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1); + llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft); const auto t_dec_start = ggml_time_us(); + // sample from the last token of the prompt + drafts[0].i_batch_tgt.resize(1); + drafts[0].i_batch_tgt[0] = 0; + while (true) { - LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted)); + // print current draft sequences + for (int s = 0; s < n_seq_dft; ++s) { + if (!drafts[s].active) { + continue; + } + + const auto & tokens = drafts[s].tokens; - int i_dft = 0; + LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str()); + } + + int i_dft = 0; + int s_keep = 0; while (true) { + LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]); + // sample from the target model - llama_token id = llama_sampling_sample(ctx_tgt, NULL, ctx_sampling, last_tokens, candidates, i_dft); + llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]); - // remember which tokens were sampled - used for repetition penalties during sampling - last_tokens.erase(last_tokens.begin()); - last_tokens.push_back(id); + llama_sampling_accept(ctx_sampling, ctx_tgt, id); //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens)); const std::string token_str = llama_token_to_piece(ctx_tgt, id); + printf("%s", token_str.c_str()); fflush(stdout); @@ -154,53 +169,67 @@ int main(int argc, char ** argv) { ++n_predict; - // check if the draft matches the target - if (i_dft < (int) drafted.size() && id == drafted[i_dft]) { - LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str()); - ++n_accept; - ++n_past_tgt; - ++n_past_dft; - ++i_dft; + // check if the target token matches any of the drafts + { + bool matches = false; - continue; - } + for (int s = 0; s < n_seq_dft; ++s) { + if (!drafts[s].active) { + continue; + } + + if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) { + LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str()); + + s_keep = s; + matches = true; + } else { + drafts[s].active = false; + } + } - // the drafted token was rejected or we are out of drafted tokens + if (matches) { + ++n_accept; + ++n_past_tgt; + ++n_past_dft; + ++i_dft; - if (i_dft < (int) drafted.size()) { - LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n", - i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str()); - } else { - LOG("out of drafted tokens\n"); + continue; + } } - llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1); - llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0)); - ++n_past_dft; + LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str()); - // heuristic for n_draft + // TODO: simplify { - const int n_draft_cur = (int) drafted.size(); - const bool all_accepted = i_dft == n_draft_cur; - - LOG("n_draft = %d\n", n_draft); - LOG("n_draft_cur = %d\n", n_draft_cur); - LOG("i_dft = %d\n", i_dft); - LOG("all_accepted = %d\n", all_accepted); - - if (all_accepted && n_draft == n_draft_cur) { - LOG(" - max drafted tokens accepted - n_draft += 8\n"); - n_draft = std::min(30, n_draft + 8); - } else if (all_accepted) { - LOG(" - partially drafted tokens accepted - no change\n"); - } else { - LOG(" - drafted token rejected - n_draft -= 1\n"); - n_draft = std::max(2, n_draft - 1); - } + LOG("keeping sequence %d\n", s_keep); + + llama_kv_cache_seq_keep(ctx_dft, s_keep); + llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1); + llama_kv_cache_seq_keep(ctx_dft, 0); + + llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1); + llama_kv_cache_seq_keep(ctx_tgt, s_keep); + llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1); + llama_kv_cache_seq_keep(ctx_tgt, 0); } - drafted.clear(); - drafted.push_back(id); + for (int s = 0; s < n_seq_dft; ++s) { + drafts[s].active = false; + drafts[s].tokens.clear(); + drafts[s].i_batch_tgt.clear(); + } + // note: will be erased after the speculation phase + drafts[0].tokens.push_back(id); + drafts[0].i_batch_tgt.push_back(0); + + llama_batch_clear(batch_dft); + llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true); + + llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1); + llama_decode (ctx_dft, batch_dft); + + ++n_past_dft; break; } @@ -209,78 +238,158 @@ int main(int argc, char ** argv) { break; } - if (grammar_tgt) { - if (grammar_dft) { - llama_grammar_free(grammar_dft); - } - // Note: Hardcoded to sequence id 0, if this ever supports parallel generation - // that will need to change. - auto it = ctx_sampling.sequence_contexts.find(0); - GGML_ASSERT(it != ctx_sampling.sequence_contexts.end()); - // This is necessary because each sequence id in sequence_contexts - // uses a copy of the original grammar. - grammar_dft = llama_grammar_copy(it->second.grammar); - - LOG("copied target grammar to draft grammar\n"); - } + llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling); - // sample n_draft tokens from the draft model using greedy decoding + int n_seq_cur = 1; int n_past_cur = n_past_dft; + + for (int s = 0; s < n_seq_dft; ++s) { + drafts[s].active = false; + drafts[s].drafting = false; + } + drafts[0].active = true; + drafts[0].drafting = true; + drafts[0].i_batch_dft = 0; + + llama_batch_clear(batch_tgt); + llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true); + + // sample n_draft tokens from the draft model using tree-based sampling for (int i = 0; i < n_draft; ++i) { - float * logits = llama_get_logits(ctx_dft); + batch_dft.n_tokens = 0; - candidates.clear(); - for (llama_token token_id = 0; token_id < n_vocab; token_id++) { - candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + for (int s = 0; s < n_seq_dft; ++s) { + drafts[s].skip = false; } - llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; + for (int s = 0; s < n_seq_dft; ++s) { + if (!drafts[s].drafting || drafts[s].skip) { + continue; + } - if (grammar_dft != NULL) { - llama_sample_grammar(ctx_dft, &cur_p, grammar_dft); - } + llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft); + + const auto & cur_p = drafts[s].ctx_sampling->cur; + + for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) { + LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n", + k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str()); + } + + if (cur_p[0].p < p_accept) { + LOG("stopping drafting for seq %3d, probability too low: %.3f < 2*%.3f\n", s, cur_p[0].p, cur_p[1].p); + drafts[s].drafting = false; + continue; + } + + std::vector<int> sa(1, s); + + // attempt to split the branch if the probability is high enough + for (int f = 1; f < 8; ++f) { + if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) { + LOG("splitting seq %3d into %3d\n", s, n_seq_cur); + + llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1); + llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1); + + // all previous tokens from this branch are now also part of the new branch + for (int t = 0; t < batch_tgt.n_tokens; ++t) { + for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) { + if (batch_tgt.seq_id[t][p] == s) { + batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur; + batch_tgt.n_seq_id[t]++; + break; + } + } + } + + // copy the draft state + drafts[n_seq_cur].active = true; + drafts[n_seq_cur].drafting = true; + drafts[n_seq_cur].skip = true; + + drafts[n_seq_cur].tokens = drafts[s].tokens; + drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft; + drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt; + + llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling); + + sa.push_back(n_seq_cur); + + n_seq_cur++; + } else { + break; + } + } + + // add drafted token for each sequence + for (int is = 0; is < (int) sa.size(); ++is) { + const llama_token id = cur_p[is].id; + + const int s = sa[is]; + + llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id); - // computes softmax and sorts the candidates - llama_sample_softmax(ctx_dft, &cur_p); + drafts[s].tokens.push_back(id); - for (int i = 0; i < 3; ++i) { - LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str()); + // add unique drafted tokens to the target batch + drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens); + + llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true); + + // no need to evaluate the last drafted token, since we won't use the result + if (batch_tgt.n_tokens > n_draft) { + drafts[s].drafting = false; + continue; + } + + // add the token to the batch for batched decoding with the draft model + drafts[s].i_batch_dft = batch_dft.n_tokens; + + llama_batch_add(batch_dft, id, n_past_cur, { s }, true); + } } - // TODO: better logic? - if (cur_p.data[0].p < 2*cur_p.data[1].p) { - LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p); + // no sequence is drafting anymore + if (batch_dft.n_tokens == 0) { break; } - // drafted token - const llama_token id = cur_p.data[0].id; - - drafted.push_back(id); + // evaluate the drafted tokens on the draft model + llama_decode(ctx_dft, batch_dft); + ++n_past_cur; ++n_drafted; - // no need to evaluate the last drafted token, since we won't use the result - if (i == n_draft - 1) { + if (batch_tgt.n_tokens > n_draft) { break; } + } - // evaluate the drafted token on the draft model - llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1); - llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0)); - ++n_past_cur; + // account for the last drafted token that we didn't evaluate + if (batch_tgt.n_tokens > n_draft) { + ++n_drafted; + } - if (grammar_dft != NULL) { - llama_grammar_accept_token(ctx_dft, grammar_dft, id); + // evaluate the target model on the drafted tokens + { + llama_kv_cache_seq_keep(ctx_tgt, 0); + for (int s = 1; s < n_seq_dft; ++s) { + llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1); } + + //LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt)); + llama_decode(ctx_tgt, batch_tgt); + ++n_past_tgt; } - // evaluate the target model on the drafted tokens - llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1); - llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0)); - ++n_past_tgt; + // the first token is always proposed by the traget model before the speculation loop so we erase it here + for (int s = 0; s < n_seq_dft; ++s) { + if (!drafts[s].active) { + continue; + } - // the first token is always proposed by the traget model before the speculation loop - drafted.erase(drafted.begin()); + drafts[s].tokens.erase(drafts[s].tokens.begin()); + } } auto t_dec_end = ggml_time_us(); @@ -288,9 +397,8 @@ int main(int argc, char ** argv) { LOG_TEE("\n\n"); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); - LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); + LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); - // TODO: make sure these numbers are computed correctly LOG_TEE("\n"); LOG_TEE("n_draft = %d\n", n_draft); LOG_TEE("n_predict = %d\n", n_predict); @@ -304,16 +412,19 @@ int main(int argc, char ** argv) { LOG_TEE("\ntarget:\n"); llama_print_timings(ctx_tgt); + llama_sampling_free(ctx_sampling); + for (int s = 0; s < n_seq_dft; ++s) { + llama_sampling_free(drafts[s].ctx_sampling); + } + + llama_batch_free(batch_dft); + llama_free(ctx_tgt); llama_free_model(model_tgt); llama_free(ctx_dft); llama_free_model(model_dft); - if (grammar_dft != NULL) { - llama_grammar_free(grammar_dft); - llama_grammar_free(grammar_tgt); - } llama_backend_free(); fprintf(stderr, "\n\n"); |