summaryrefslogtreecommitdiff
path: root/examples/train-text-from-scratch
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2023-08-21 23:07:43 +0300
committerGitHub <noreply@github.com>2023-08-21 23:07:43 +0300
commit6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9 (patch)
tree15f5b726f864ad0913bc8dcf6ea08b90ecc7ada9 /examples/train-text-from-scratch
parentdadbed99e65252d79f81101a392d0d6497b86caa (diff)
gguf : new file format with flexible meta data (beta) (#2398)
* gguf : first API pass * gguf : read header + meta data * gguf : read tensor info * gguf : initial model loading - not tested * gguf : add gguf_get_tensor_name() * gguf : do not support passing existing ggml_context to gguf_init * gguf : simplify gguf_get_val * gguf : gguf.c is now part of ggml.c * gguf : read / write sample models * gguf : add comments * refactor : reduce code duplication and better API (#2415) * gguf : expose the gguf_type enum through the API for now * gguf : add array support * gguf.py : some code style changes * convert.py : start a new simplified implementation by removing old stuff * convert.py : remove GGML vocab + other obsolete stuff * GGUF : write tensor (#2426) * WIP: Write tensor * GGUF : Support writing tensors in Python * refactor : rm unused import and upd todos * fix : fix errors upd writing example * rm example.gguf * gitignore *.gguf * undo formatting * gguf : add gguf_find_key (#2438) * gguf.cpp : find key example * ggml.h : add gguf_find_key * ggml.c : add gguf_find_key * gguf : fix writing tensors * gguf : do not hardcode tensor names to read * gguf : write sample tensors to read * gguf : add tokenization constants * quick and dirty conversion example * gguf : fix writing gguf arrays * gguf : write tensors one by one and code reuse * gguf : fix writing gguf arrays * gguf : write tensors one by one * gguf : write tensors one by one * gguf : write tokenizer data * gguf : upd gguf conversion script * Update convert-llama-h5-to-gguf.py * gguf : handle already encoded string * ggml.h : get array str and f32 * ggml.c : get arr str and f32 * gguf.py : support any type * Update convert-llama-h5-to-gguf.py * gguf : fix set is not subscriptable * gguf : update convert-llama-h5-to-gguf.py * constants.py : add layer norm eps * gguf.py : add layer norm eps and merges * ggml.h : increase GGML_MAX_NAME to 64 * ggml.c : add gguf_get_arr_n * Update convert-llama-h5-to-gguf.py * add gptneox gguf example * Makefile : add gptneox gguf example * Update convert-llama-h5-to-gguf.py * add gptneox gguf example * Update convert-llama-h5-to-gguf.py * Update convert-gptneox-h5-to-gguf.py * Update convert-gptneox-h5-to-gguf.py * Update convert-llama-h5-to-gguf.py * gguf : support custom alignment value * gguf : fix typo in function call * gguf : mmap tensor data example * fix : update convert-llama-h5-to-gguf.py * Update convert-llama-h5-to-gguf.py * convert-gptneox-h5-to-gguf.py : Special tokens * gptneox-main.cpp : special tokens * Update gptneox-main.cpp * constants.py : special tokens * gguf.py : accumulate kv and tensor info data + special tokens * convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens * gguf : gguf counterpart of llama-util.h * gguf-util.h : update note * convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens * convert-llama-h5-to-gguf.py : special tokens * Delete gptneox-common.cpp * Delete gptneox-common.h * convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer * gptneox-main.cpp : gpt2 bpe tokenizer * gpt2 bpe tokenizer (handles merges and unicode) * Makefile : remove gptneox-common * gguf.py : bytesarray for gpt2bpe tokenizer * cmpnct_gpt2bpe.hpp : comments * gguf.py : use custom alignment if present * gguf : minor stuff * Update gptneox-main.cpp * map tensor names * convert-gptneox-h5-to-gguf.py : map tensor names * convert-llama-h5-to-gguf.py : map tensor names * gptneox-main.cpp : map tensor names * gguf : start implementing libllama in GGUF (WIP) * gguf : start implementing libllama in GGUF (WIP) * rm binary commited by mistake * upd .gitignore * gguf : calculate n_mult * gguf : inference with 7B model working (WIP) * gguf : rm deprecated function * gguf : start implementing gguf_file_saver (WIP) * gguf : start implementing gguf_file_saver (WIP) * gguf : start implementing gguf_file_saver (WIP) * gguf : add gguf_get_kv_type * gguf : add gguf_get_kv_type * gguf : write metadata in gguf_file_saver (WIP) * gguf : write metadata in gguf_file_saver (WIP) * gguf : write metadata in gguf_file_saver * gguf : rm references to old file formats * gguf : shorter name for member variable * gguf : rm redundant method * gguf : get rid of n_mult, read n_ff from file * Update gguf_tensor_map.py * Update gptneox-main.cpp * gguf : rm references to old file magics * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : quantization is working * gguf : roper closing of file * gguf.py : no need to convert tensors twice * convert-gptneox-h5-to-gguf.py : no need to convert tensors twice * convert-llama-h5-to-gguf.py : no need to convert tensors twice * convert-gptneox-h5-to-gguf.py : simplify nbytes * convert-llama-h5-to-gguf.py : simplify nbytes * gptneox-main.cpp : n_layer --> n_block * constants.py : n_layer --> n_block * gguf.py : n_layer --> n_block * convert-gptneox-h5-to-gguf.py : n_layer --> n_block * convert-llama-h5-to-gguf.py : n_layer --> n_block * gptneox-main.cpp : n_layer --> n_block * Update gguf_tensor_map.py * convert-gptneox-h5-to-gguf.py : load model in parts to save memory * convert-llama-h5-to-gguf.py : load model in parts to save memory * convert : write more metadata for LLaMA * convert : rm quantization version * convert-gptneox-h5-to-gguf.py : add file_type key * gptneox-main.cpp : add file_type key * fix conflicts * gguf : add todos and comments * convert-gptneox-h5-to-gguf.py : tensor name map changes * Create gguf_namemap.py : tensor name map changes * Delete gguf_tensor_map.py * gptneox-main.cpp : tensor name map changes * convert-llama-h5-to-gguf.py : fixes * gguf.py : dont add empty strings * simple : minor style changes * gguf : use UNIX line ending * Create convert-llama-7b-pth-to-gguf.py * llama : sync gguf-llama.cpp with latest llama.cpp (#2608) * llama : sync gguf-llama.cpp with latest llama.cpp * minor : indentation + assert * llama : refactor gguf_buffer and gguf_ctx_buffer * llama : minor * gitignore : add gptneox-main * llama : tokenizer fixes (#2549) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * convert : update convert-new.py with tokenizer fixes (#2614) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * llama : sync gguf-llama with llama (#2613) * llama : sync gguf-llama with llama * tests : fix build + warnings (test-tokenizer-1 still fails) * tests : fix wstring_convert * convert : fix layer names * llama : sync gguf-llama.cpp * convert : update HF converter to new tokenizer voodoo magics * llama : update tokenizer style * convert-llama-h5-to-gguf.py : add token types * constants.py : add token types * gguf.py : add token types * convert-llama-7b-pth-to-gguf.py : add token types * gguf-llama.cpp : fix n_head_kv * convert-llama-h5-to-gguf.py : add 70b gqa support * gguf.py : add tensor data layout * convert-llama-h5-to-gguf.py : add tensor data layout * convert-llama-7b-pth-to-gguf.py : add tensor data layout * gptneox-main.cpp : add tensor data layout * convert-llama-h5-to-gguf.py : clarify the reverse permute * llama : refactor model loading code (#2620) * llama : style formatting + remove helper methods * llama : fix quantization using gguf tool * llama : simplify gguf_file_saver * llama : fix method names * llama : simplify write_header() * llama : no need to pass full file loader to the file saver just gguf_ctx * llama : gguf_file_saver write I32 * llama : refactor tensor names (#2622) * gguf: update tensor names searched in quantization * gguf : define tensor names as constants * gguf : initial write API (not tested yet) * gguf : write to file API (not tested) * gguf : initial write API ready + example * gguf : fix header write * gguf : fixes + simplify example + add ggml_nbytes_pad() * gguf : minor * llama : replace gguf_file_saver with new gguf write API * gguf : streaming support when writing files * gguf : remove oboslete write methods * gguf : remove obosolete gguf_get_arr_xxx API * llama : simplify gguf_file_loader * llama : move hparams and vocab from gguf_file_loader to llama_model_loader * llama : merge gguf-util.h in llama.cpp * llama : reorder definitions in .cpp to match .h * llama : minor simplifications * llama : refactor llama_model_loader (WIP) wip : remove ggml_ctx from llama_model_loader wip : merge gguf_file_loader in llama_model_loader * llama : fix shape prints * llama : fix Windows build + fix norm_rms_eps key * llama : throw error on missing KV paris in model meta data * llama : improve printing + log meta data * llama : switch print order of meta data --------- Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com> * gguf : deduplicate (#2629) * gguf : better type names * dedup : CPU + Metal is working * ggml : fix warnings about unused results * llama.cpp : fix line feed and compiler warning * llama : fix strncpy warning + note token_to_str does not write null * llama : restore the original load/save session implementation Will migrate this to GGUF in the future * convert-llama-h5-to-gguf.py : support alt ctx param name * ggml : assert when using ggml_mul with non-F32 src1 * examples : dedup simple --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> * gguf.py : merge all files in gguf.py * convert-new.py : pick #2427 for HF 70B support * examples/gguf : no need to keep q option for quantization any more * llama.cpp : print actual model size * llama.cpp : use ggml_elements() * convert-new.py : output gguf (#2635) * convert-new.py : output gguf (WIP) * convert-new.py : add gguf key-value pairs * llama : add hparams.ctx_train + no longer print ftype * convert-new.py : minor fixes * convert-new.py : vocab-only option should work now * llama : fix tokenizer to use llama_char_to_byte * tests : add new ggml-vocab-llama.gguf * convert-new.py : tensor name mapping * convert-new.py : add map for skipping tensor serialization * convert-new.py : convert script now works * gguf.py : pick some of the refactoring from #2644 * convert-new.py : minor fixes * convert.py : update to support GGUF output * Revert "ci : disable CI temporary to not waste energy" This reverts commit 7e82d25f40386540c2c15226300ad998ecd871ea. * convert.py : n_head_kv optional and .gguf file extension * convert.py : better always have n_head_kv and default it to n_head * llama : sync with recent PRs on master * editorconfig : ignore models folder ggml-ci * ci : update ".bin" to ".gguf" extension ggml-ci * llama : fix llama_model_loader memory leak * gptneox : move as a WIP example * llama : fix lambda capture ggml-ci * ggml : fix bug in gguf_set_kv ggml-ci * common.h : .bin --> .gguf * quantize-stats.cpp : .bin --> .gguf * convert.py : fix HF tensor permuting / unpacking ggml-ci * llama.cpp : typo * llama : throw error if gguf fails to init from file ggml-ci * llama : fix tensor name grepping during quantization ggml-ci * gguf.py : write tensors in a single pass (#2644) * gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : style fixes in simple conversion script * gguf : refactor gptneox conversion script * gguf : rename h5 to hf (for HuggingFace) * gguf : refactor pth to gguf conversion script * gguf : rm file_type key and method * gguf.py : fix vertical alignment * gguf.py : indentation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * convert-gptneox-hf-to-gguf.py : fixes * gguf.py : gptneox mapping * convert-llama-hf-to-gguf.py : fixes * convert-llama-7b-pth-to-gguf.py : fixes * ggml.h : reverse GGUF_MAGIC * gguf.py : reverse GGUF_MAGIC * test-tokenizer-0.cpp : fix warning * llama.cpp : print kv general.name * llama.cpp : get special token kv and linefeed token id * llama : print number of tensors per type + print arch + style * tests : update vocab file with new magic * editorconfig : fix whitespaces * llama : re-order functions * llama : remove C++ API + reorganize common source in /common dir * llama : minor API updates * llama : avoid hardcoded special tokens * llama : fix MPI build ggml-ci * llama : introduce enum llama_vocab_type + remove hardcoded string constants * convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested * falcon-main.cpp : falcon inference example * convert-falcon-hf-to-gguf.py : remove extra kv * convert-gptneox-hf-to-gguf.py : remove extra kv * convert-llama-7b-pth-to-gguf.py : remove extra kv * convert-llama-hf-to-gguf.py : remove extra kv * gguf.py : fix for falcon 40b * falcon-main.cpp : fix for falcon 40b * convert-falcon-hf-to-gguf.py : update ref * convert-falcon-hf-to-gguf.py : add tensor data layout * cmpnct_gpt2bpe.hpp : fixes * falcon-main.cpp : fixes * gptneox-main.cpp : fixes * cmpnct_gpt2bpe.hpp : remove non-general stuff * Update examples/server/README.md Co-authored-by: slaren <slarengh@gmail.com> * cmpnct_gpt2bpe.hpp : cleanup * convert-llama-hf-to-gguf.py : special tokens * convert-llama-7b-pth-to-gguf.py : special tokens * convert-permute-debug.py : permute debug print * convert-permute-debug-master.py : permute debug for master * convert-permute-debug.py : change permute type of attn_q * convert.py : 70b model working (change attn_q permute) * Delete convert-permute-debug-master.py * Delete convert-permute-debug.py * convert-llama-hf-to-gguf.py : fix attn_q permute * gguf.py : fix rope scale kv * convert-llama-hf-to-gguf.py : rope scale and added tokens * convert-llama-7b-pth-to-gguf.py : rope scale and added tokens * llama.cpp : use rope scale kv * convert-llama-7b-pth-to-gguf.py : rope scale fix * convert-llama-hf-to-gguf.py : rope scale fix * py : fix whitespace * gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682) * First pass at converting GGMLv3 LLaMA models to GGUF * Cleanups, better output during conversion * Fix vocab space conversion logic * More vocab conversion fixes * Add description to converted GGUF files * Improve help text, expand warning * Allow specifying name and description for output GGUF * Allow overriding vocab and hyperparams from original model metadata * Use correct params override var name * Fix wrong type size for Q8_K Better handling of original style metadata * Set default value for gguf add_tensor raw_shape KW arg * llama : improve token type support (#2668) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * Improved tokenizer test But does it work on MacOS? * Improve token type support - Added @klosax code to convert.py - Improved token type support in vocabulary * Exclude platform dependent tests * More sentencepiece compatibility by eliminating magic numbers * Restored accidentally removed comment * llama : add API for token type ggml-ci * tests : use new tokenizer type API (#2692) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * Improved tokenizer test But does it work on MacOS? * Improve token type support - Added @klosax code to convert.py - Improved token type support in vocabulary * Exclude platform dependent tests * More sentencepiece compatibility by eliminating magic numbers * Restored accidentally removed comment * Improve commentary * Use token type API in test-tokenizer-1.cpp * py : cosmetics * readme : add notice about new file format ggml-ci --------- Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com> Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> Co-authored-by: goerch <jhr.walter@t-online.de> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Diffstat (limited to 'examples/train-text-from-scratch')
-rw-r--r--examples/train-text-from-scratch/train-text-from-scratch.cpp138
1 files changed, 68 insertions, 70 deletions
diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp
index 54dc2bee..31d6620a 100644
--- a/examples/train-text-from-scratch/train-text-from-scratch.cpp
+++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp
@@ -1,4 +1,5 @@
#include "ggml.h"
+#include "common.h"
#include "llama.h"
#include <unordered_map>
#include <vector>
@@ -16,7 +17,7 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
-static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
+static const float rms_norm_eps = 1e-5f;
struct random_normal_distribution {
std::mt19937 gen;
@@ -169,14 +170,16 @@ struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struc
struct llama_vocab {
using id = int32_t;
using token = std::string;
+ using ttype = llama_token_type;
- struct token_score {
- token tok;
+ struct token_data {
+ token text;
float score;
+ ttype type;
};
std::unordered_map<token, id> token_to_id;
- std::vector<token_score> id_to_token;
+ std::vector<token_data> id_to_token;
};
struct my_llama_hparams {
@@ -1961,7 +1964,7 @@ void print_matrix(struct ggml_tensor * probs) {
void print_token(struct llama_context * ctx, llama_token token) {
- printf("%s", llama_token_to_str(ctx, token));
+ printf("%s", llama_token_to_str(ctx, token).c_str());
}
void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) {
@@ -1995,7 +1998,7 @@ void print_tokens_batch(struct llama_context* ctx, struct ggml_tensor * tokens)
}
}
-void get_example_targets(const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
+void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
int n_tokens = tokens_input->ne[0];
int n_vocab = target_logits->ne[0];
@@ -2004,7 +2007,7 @@ void get_example_targets(const int * train_samples, size_t n_train_samples, cons
ggml_set_f32(target_logits, -1.0f/n_vocab);
ggml_set_f32(target_probs, 0.0f);
- ggml_set_i32_1d(tokens_input, 0, llama_token_bos());
+ ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx));
for (int i=1; i<n_tokens+1; ++i) {
int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
set_f32_2d(target_logits, token, i-1, +1.0f);
@@ -2015,7 +2018,7 @@ void get_example_targets(const int * train_samples, size_t n_train_samples, cons
}
}
-void get_example_targets_batch(struct llama_context * /*lctx*/, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
+void get_example_targets_batch(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT(target_logits->n_dims == 3);
GGML_ASSERT(target_probs->n_dims == 3);
@@ -2035,7 +2038,7 @@ void get_example_targets_batch(struct llama_context * /*lctx*/, const int * trai
size_t sample = train_samples[(example_id*n_batch + k) % n_train_samples];
GGML_ASSERT(sample+n_tokens-1 < n_train_data);
- set_i32_2d(tokens_input, 0, k, llama_token_bos());
+ set_i32_2d(tokens_input, 0, k, llama_token_bos(lctx));
for (int i=1; i<n_tokens+1; ++i) {
int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
// print_token(lctx, token);
@@ -2188,11 +2191,10 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
f.read_raw(buf.data(), f.size);
buf[f.size] = '\0';
- out.resize(buf.size());
-
- int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), buf.size(), false);
- if (n_tokens >= 0) {
- out.resize(n_tokens);
+ int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), out.size(), false);
+ if (n_tokens < 0) {
+ out.resize(-n_tokens);
+ llama_tokenize(lctx, buf.data(), out.data(), out.size(), false);
}
bool verify = false;
@@ -2200,17 +2202,17 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
const char * in = buf.data();
const char * end = buf.data() + buf.size();
for (int i = 0; i < (int) out.size(); ++i) {
- const char * s = llama_token_to_str(lctx, out[i]);
- int len = strlen(s);
+ std::string s = llama_token_to_str(lctx, out[i]);
+ int len = s.length();
if (in >= end) {
printf("%s: unexpected end of original text.\n", __func__);
break;
}
- const bool matches = (strncmp(in, s, len) == 0);
+ const bool matches = (strncmp(in, s.c_str(), len) == 0);
if (matches) {
in += len;
} else {
- printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s);
+ printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str());
}
}
}
@@ -2294,7 +2296,7 @@ llama_token sample(struct my_llama_sampler * sampler, float * logits, const llam
const auto params = sampler->params;
// Apply penalties
- const float nl_logit = logits[llama_token_nl()];
+ const float nl_logit = logits[llama_token_nl(ctx)];
const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx);
@@ -2313,7 +2315,7 @@ llama_token sample(struct my_llama_sampler * sampler, float * logits, const llam
params.alpha_presence);
if (!params.penalize_nl) {
- logits[llama_token_nl()] = nl_logit;
+ logits[llama_token_nl(ctx)] = nl_logit;
}
llama_token token = 0;
@@ -2612,42 +2614,45 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
return;
}
- // write_magic
- file.write_u32(LLAMA_FILE_MAGIC); // magic
- file.write_u32(LLAMA_FILE_VERSION); // version
- // write_hparams
- file.write_u32(model->hparams.n_vocab);
- file.write_u32(model->hparams.n_embd);
- file.write_u32(model->hparams.n_mult);
- file.write_u32(model->hparams.n_head);
- file.write_u32(model->hparams.n_layer);
- file.write_u32(model->hparams.n_rot);
- file.write_u32(LLAMA_FTYPE_ALL_F32);
- // write_vocab
- uint32_t n_vocab = model->hparams.n_vocab;
- for (uint32_t i = 0; i < n_vocab; i++) {
- const auto & token_score = vocab->id_to_token.at(i);
- file.write_u32((uint32_t) token_score.tok.size());
- file.write_raw(token_score.tok.data(), token_score.tok.size());
- file.write_raw(&token_score.score, sizeof(token_score.score));
- }
- // write tensors
- write_tensor(&file, model->tok_embeddings);
- write_tensor(&file, model->norm);
- write_tensor(&file, model->output);
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
-
- write_tensor(&file, layer.attention_norm);
- write_tensor(&file, layer.wq);
- write_tensor(&file, layer.wk);
- write_tensor(&file, layer.wv);
- write_tensor(&file, layer.wo);
- write_tensor(&file, layer.ffn_norm);
- write_tensor(&file, layer.w1);
- write_tensor(&file, layer.w2);
- write_tensor(&file, layer.w3);
- }
+#pragma message("TODO: implement file saving using gguf")
+ (void) vocab;
+ (void) model;
+// // write_magic
+// file.write_u32(LLAMA_FILE_MAGIC); // magic
+// file.write_u32(LLAMA_FILE_VERSION); // version
+// // write_hparams
+// file.write_u32(model->hparams.n_vocab);
+// file.write_u32(model->hparams.n_embd);
+// file.write_u32(model->hparams.n_mult);
+// file.write_u32(model->hparams.n_head);
+// file.write_u32(model->hparams.n_layer);
+// file.write_u32(model->hparams.n_rot);
+// file.write_u32(LLAMA_FTYPE_ALL_F32);
+// // write_vocab
+// uint32_t n_vocab = model->hparams.n_vocab;
+// for (uint32_t i = 0; i < n_vocab; i++) {
+// const auto & token_data = vocab->id_to_token.at(i);
+// file.write_u32((uint32_t) token_data.tok.size());
+// file.write_raw(token_data.tok.data(), token_data.tok.size());
+// file.write_raw(&token_data.score, sizeof(token_data.score));
+// }
+// // write tensors
+// write_tensor(&file, model->tok_embeddings);
+// write_tensor(&file, model->norm);
+// write_tensor(&file, model->output);
+// for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
+// auto & layer = model->layers[i];
+//
+// write_tensor(&file, layer.attention_norm);
+// write_tensor(&file, layer.wq);
+// write_tensor(&file, layer.wk);
+// write_tensor(&file, layer.wv);
+// write_tensor(&file, layer.wo);
+// write_tensor(&file, layer.ffn_norm);
+// write_tensor(&file, layer.w1);
+// write_tensor(&file, layer.w2);
+// write_tensor(&file, layer.w3);
+// }
}
float cosine_decay(const int decay_steps, const float alpha, int step) {
@@ -3052,20 +3057,13 @@ int main(int argc, char ** argv) {
struct llama_vocab vocab;
{
- std::vector<const char *> strings;
- std::vector<float> scores;
- int n_vocab = llama_n_vocab(lctx);
- strings.resize(n_vocab, NULL);
- scores.resize(n_vocab, 0);
- n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab);
- GGML_ASSERT(n_vocab == llama_n_vocab(lctx));
+ const int n_vocab = llama_n_vocab(lctx);
vocab.id_to_token.resize(n_vocab);
for (int i=0; i<n_vocab; ++i) {
- std::string tok = std::string(strings[i]);
- float score = scores[i];
- vocab.id_to_token[i].tok = tok;
- vocab.id_to_token[i].score = score;
- vocab.token_to_id.emplace(tok, i);
+ vocab.id_to_token[i].text = llama_token_get_text(lctx, i);
+ vocab.id_to_token[i].score = llama_token_get_score(lctx, i);
+ vocab.id_to_token[i].type = llama_token_get_type(lctx, i);
+ vocab.token_to_id.emplace(vocab.id_to_token[i].text, i);
}
}
@@ -3178,7 +3176,7 @@ int main(int argc, char ** argv) {
std::vector<int> train_samples;
train_samples.push_back(0);
for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) {
- if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl())) {
+ if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) {
train_samples.push_back(i);
}
}
@@ -3338,7 +3336,7 @@ int main(int argc, char ** argv) {
struct ggml_tensor * target_logits = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
struct ggml_tensor * target_probs = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
- get_example_targets(train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs);
+ get_example_targets(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs);
for (int i=sample_ctx; i<n_tokens; ++i) {
ggml_set_i32_1d(tokens_input, i, n_vocab/2);
}