diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2025-05-13 17:53:38 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-05-13 17:53:38 +0300 |
commit | 0c57f84dc41aa756dae7b1aaee0d3db6ecc14300 (patch) | |
tree | bf8952767227953f640b06145950befb24b1976e /examples | |
parent | 553c08b6b47008928653d5e377211cd38dfaeffc (diff) |
Fix imatrix calculation for MLA models (#411)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples')
-rw-r--r-- | examples/imatrix/imatrix.cpp | 44 |
1 files changed, 29 insertions, 15 deletions
diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index d1693fa5..2e03a4a0 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -60,7 +60,7 @@ private: int m_last_call = 0; int m_last_layer = 9999; int m_last_ffn = -1; - std::vector<float> m_src1_data; + std::vector<char> m_src1_data; std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id std::vector<float> m_last_input; std::vector<float> m_ffn_input; @@ -189,11 +189,12 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * const bool is_host = ggml_backend_buffer_is_host(src1->buffer); if (!is_host) { - m_src1_data.resize(ggml_nelements(src1)); - ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1)); + auto nbytes = ggml_nbytes(src1); + m_src1_data.resize(nbytes); + ggml_backend_tensor_get(src1, m_src1_data.data(), 0, nbytes); } - const float * data = is_host ? (const float *) src1->data : m_src1_data.data(); + const float * data = is_host ? (const float *) src1->data : (const float *)m_src1_data.data(); if (m_collect_lsim) { if (wname.find(".ffn_") != std::string::npos) { @@ -331,10 +332,17 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * } auto & e = m_stats[wname]; if (e.values.empty()) { - e.values.resize(src1->ne[0], 0); - e.counts.resize(src1->ne[0], 0); + if (src0->ne[3] > 1) { + fprintf(stderr, "Unsupported 4D tensor %s\n", wname.c_str()); + exit(1); + } + // If we have a 3D tensor as it is the case for the attn_k_b and attn_v_b for DeepSeek MLA models, + // than we need to compute the imatrix for each head, and not just one imatrx for all heads. + // Hence, the storage we need is src0->ne[0]*src0->ne[2]. + e.values.resize(src0->ne[0]*src0->ne[2], 0); + e.counts.resize(src0->ne[0]*src0->ne[2], 0); } - else if (e.values.size() != (size_t)src1->ne[0]) { + else if (e.values.size() != (size_t)(src0->ne[0]*src0->ne[2])) { fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); exit(1); //GGML_ABORT("fatal error"); } @@ -342,14 +350,20 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * if (m_params.verbosity > 1) { printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); } - for (int row = 0; row < (int)(src1->ne[1]*src1->ne[2]); ++row) { - const float * x = data + row * src1->ne[0]; - for (int j = 0; j < (int)src1->ne[0]; ++j) { - e.values[j] += x[j]*x[j]; - e.counts[j]++; - if (!std::isfinite(e.values[j])) { - fprintf(stderr, "%f detected in %s\n", e.values[j], wname.c_str()); - exit(1); + int rk2 = src1->ne[2]/src0->ne[2]; + for (int i12 = 0; i12 < (int)src1->ne[2]; ++i12) { // i.e., loop over attention heads for MLA models + int i02 = i12/rk2; + auto values = e.values.data() + i02*src0->ne[0]; + auto counts = e.counts.data() + i02*src0->ne[0]; + for (int i11 = 0; i11 < (int)src1->ne[1]; ++i11) { + const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]); + for (int j = 0; j < (int)src1->ne[0]; ++j) { + values[j] += x[j]*x[j]; + counts[j]++; + if (!std::isfinite(values[j])) { + fprintf(stderr, "%f detected in %s\n", e.values[j], wname.c_str()); + exit(1); + } } } } |