diff options
author | saood06 <saood05@gmail.com> | 2025-02-23 00:16:27 -0600 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-02-23 00:16:27 -0600 |
commit | 46bf73a37f1aabe6f0b40365b0c7b2ba831905f5 (patch) | |
tree | 9b684d9fdc8fc42fa44da832d998091fa33b6444 /examples | |
parent | 71b7b510c2dc55ae70934d246cd4e6c3bdf4a95c (diff) |
Add new sweep-bench benchmark (#225)
* examples : add new sweep-bench benchmark
* Change documentation to reference ik_llama.cpp
* Made it compile with ik_llama
* Fix JSONL output
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Diffstat (limited to 'examples')
-rw-r--r-- | examples/CMakeLists.txt | 1 | ||||
-rw-r--r-- | examples/sweep-bench/CMakeLists.txt | 5 | ||||
-rw-r--r-- | examples/sweep-bench/README.md | 64 | ||||
-rwxr-xr-x | examples/sweep-bench/sweep-bench-plot.py | 100 | ||||
-rw-r--r-- | examples/sweep-bench/sweep-bench.cpp | 189 |
5 files changed, 359 insertions, 0 deletions
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 67b3d277..3987fe13 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -51,5 +51,6 @@ else() add_subdirectory(save-load-state) add_subdirectory(simple) add_subdirectory(speculative) + add_subdirectory(sweep-bench) add_subdirectory(tokenize) endif() diff --git a/examples/sweep-bench/CMakeLists.txt b/examples/sweep-bench/CMakeLists.txt new file mode 100644 index 00000000..e49f0fea --- /dev/null +++ b/examples/sweep-bench/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET llama-sweep-bench) +add_executable(${TARGET} sweep-bench.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_17) diff --git a/examples/sweep-bench/README.md b/examples/sweep-bench/README.md new file mode 100644 index 00000000..608fd104 --- /dev/null +++ b/examples/sweep-bench/README.md @@ -0,0 +1,64 @@ +# ik_llama.cpp/example/sweep-bench + +Benchmark the prompt processing and token generation performance of `ik_llama.cpp` +by doing a sweep over a whole context size and gathering performance metrics +in each ubatch-sized window. Only a single token sequence is used. + +The benchmark steps are: + +for each ubatch-sized window in context: + 1. generate ubatch/4 tokens (not the whole window to save some time) + 2. measure generation performance + 3. remove generated tokens from KV cache + 4. prepare a ubatch-sized batch of random tokens + 4. process prepated batch + 5. measure prompt processing performance + +The purpose of the benchmark is to visualize how the performance changes with +the context size without averaging the metrics values over the whole context. + +## Usage + +./llama-sweep-bench -c 8704 -ub 512 -m models/Meta-Llama-3.2-3B-Instruct-Q8_0.gguf + +## Sample results + +- `PP` - prompt tokens per ubatch +- `TG` - generated tokens per ubatch +- `N_KV` - current KV cache size +- `T_PP` - prompt processing time (i.e. time to first token) +- `S_PP` - prompt processing speed (`(B*PP)/T_PP` or `PP/T_PP`) +- `T_TG` - time to generate all batches +- `S_TG` - text generation speed (`(B*TG)/T_TG`) + +| PP | TG | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | +|-------|--------|--------|----------|----------|----------|----------| +| 512 | 128 | 0 | 1.100 | 465.51 | 2.311 | 55.38 | +| 512 | 128 | 512 | 1.183 | 432.97 | 1.895 | 67.55 | +| 512 | 128 | 1024 | 1.305 | 392.38 | 2.071 | 61.81 | +| 512 | 128 | 1536 | 1.279 | 400.42 | 2.164 | 59.14 | +| 512 | 128 | 2048 | 1.571 | 325.96 | 2.280 | 56.14 | +| 512 | 128 | 2560 | 1.431 | 357.87 | 2.418 | 52.94 | +| 512 | 128 | 3072 | 1.515 | 337.93 | 2.566 | 49.88 | +| 512 | 128 | 3584 | 1.588 | 322.34 | 2.722 | 47.03 | +| 512 | 128 | 4096 | 1.675 | 305.70 | 2.864 | 44.69 | +| 512 | 128 | 4608 | 1.769 | 289.50 | 2.999 | 42.68 | +| 512 | 128 | 5120 | 1.845 | 277.48 | 3.102 | 41.26 | +| 512 | 128 | 5632 | 1.893 | 270.46 | 3.219 | 39.76 | +| 512 | 128 | 6144 | 1.953 | 262.20 | 3.348 | 38.23 | +| 512 | 128 | 6656 | 2.018 | 253.71 | 3.474 | 36.84 | +| 512 | 128 | 7168 | 2.078 | 246.34 | 3.589 | 35.66 | +| 512 | 128 | 7680 | 2.140 | 239.22 | 3.717 | 34.43 | +| 512 | 128 | 8192 | 2.196 | 233.15 | 3.854 | 33.21 | + +### JSONL output + +Pass `--output-format jsonl` to output JSONL instead of Markdown, á la + +```json lines +{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 0, "t_pp": 1.093814, "speed_pp": 468.086884, "t_tg": 1.780312, "speed_tg": 71.897514 } +{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 512, "t_pp": 1.169302, "speed_pp": 437.868073, "t_tg": 1.897474, "speed_tg": 67.458099 } +{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 1024, "t_pp": 1.183700, "speed_pp": 432.542053, "t_tg": 2.059179, "speed_tg": 62.160694 } +{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 1536, "t_pp": 1.428625, "speed_pp": 358.386566, "t_tg": 2.160639, "speed_tg": 59.241734 } +{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 2048, "t_pp": 1.360647, "speed_pp": 376.291595, "t_tg": 2.274003, "speed_tg": 56.288403 } +``` diff --git a/examples/sweep-bench/sweep-bench-plot.py b/examples/sweep-bench/sweep-bench-plot.py new file mode 100755 index 00000000..0d3c81db --- /dev/null +++ b/examples/sweep-bench/sweep-bench-plot.py @@ -0,0 +1,100 @@ +import pandas as pd +import matplotlib.pyplot as plt +import numpy as np +import argparse + +parser = argparse.ArgumentParser() +parser.add_argument('file', nargs='+') +args = parser.parse_args() + +df = None + +for jsonl_file in args.file: + # Read JSONL file into DataFrame + df_part = pd.read_json(jsonl_file, lines=True) + df_part['label'] = jsonl_file + if df is None: + df = df_part + else: + df = pd.concat([df, df_part]) + +# Group by model and n_kv, calculate mean and std for both speed metrics +df_grouped = df.groupby(['label', 'n_kv']).agg({ + 'speed_pp': ['mean', 'std'], + 'speed_tg': ['mean', 'std'] +}).reset_index() + +# Flatten multi-index columns +df_grouped.columns = ['label', 'n_kv', 'speed_pp_mean', 'speed_pp_std', + 'speed_tg_mean', 'speed_tg_std'] + +# Replace NaN with 0 (std for a single sample is NaN) + +df_grouped['speed_pp_std'] = df_grouped['speed_pp_std'].fillna(0) +df_grouped['speed_tg_std'] = df_grouped['speed_tg_std'].fillna(0) + +# Prepare ticks values for X axis (prune for readability) +x_ticks = df['n_kv'].unique() +while len(x_ticks) > 16: + x_ticks = x_ticks[::2] + +# Get unique labels and color map +labels = df_grouped['label'].unique() +colors = plt.cm.rainbow(np.linspace(0, 1, len(labels))) + +# Create prompt processing plot +plt.figure(figsize=(10, 6)) +ax1 = plt.gca() + +plt.grid() + +ax1.set_xticks(x_ticks) + +# Plot each label's data +for label, color in zip(labels, colors): + label_data = df_grouped[df_grouped['label'] == label].sort_values('n_kv') + + # Plot prompt processing + pp = ax1.errorbar(label_data['n_kv'], label_data['speed_pp_mean'], + yerr=label_data['speed_pp_std'], color=color, + marker='o', linestyle='-', label=label) + +# Add labels and title +ax1.set_xlabel('Context Length (tokens)') +ax1.set_ylabel('Prompt Processing Rate (t/s)') +plt.title('Prompt Processing Performance Comparison') + +ax1.legend(loc='upper right') + +# Adjust layout and save +plt.tight_layout() +plt.savefig('performance_comparison_pp.png', bbox_inches='tight') +plt.close() + +# Create token generation plot +plt.figure(figsize=(10, 6)) +ax1 = plt.gca() + +plt.grid() +ax1.set_xticks(x_ticks) + +# Plot each model's data +for label, color in zip(labels, colors): + label_data = df_grouped[df_grouped['label'] == label].sort_values('n_kv') + + # Plot token generation + tg = ax1.errorbar(label_data['n_kv'], label_data['speed_tg_mean'], + yerr=label_data['speed_tg_std'], color=color, + marker='s', linestyle='-', label=label) + +# Add labels and title +ax1.set_xlabel('Context Length (n_kv)') +ax1.set_ylabel('Token Generation Rate (t/s)') +plt.title('Token Generation Performance Comparison') + +ax1.legend(loc='upper right') + +# Adjust layout and save +plt.tight_layout() +plt.savefig('performance_comparison_tg.png', bbox_inches='tight') +plt.close() diff --git a/examples/sweep-bench/sweep-bench.cpp b/examples/sweep-bench/sweep-bench.cpp new file mode 100644 index 00000000..4e594de5 --- /dev/null +++ b/examples/sweep-bench/sweep-bench.cpp @@ -0,0 +1,189 @@ +#include "ggml.h" +#include "llama.h" +#include "common.h" +#include "llama-vocab.h" + +#ifdef _WIN32 +#define WIN32_LEAN_AND_MEAN +#ifndef NOMINMAX +# define NOMINMAX +#endif +#include <windows.h> +#endif + +#include <algorithm> +#include <cstdlib> +#include <cstdio> +#include <string> +#include <vector> + +static void print_usage(int, char ** argv) { + LOG("\nexample usage:\n"); + LOG("\n %s -m model.gguf -c 8192 -b 2048 -ub 512\n", argv[0]); + LOG("\n"); +} + +int main(int argc, char ** argv) { + + gpt_params params; + + if (!gpt_params_parse(argc, argv, params)) { + print_usage(argc, argv); + return 1; + } + + // init LLM + + llama_backend_init(); + llama_numa_init(params.numa); + + // initialize the model + + llama_model_params model_params = llama_model_params_from_gpt_params(params); + + llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); + + if (model == NULL) { + fprintf(stderr , "%s: error: unable to load model\n" , __func__); + return 1; + } + + llama_context_params ctx_params = llama_context_params_from_gpt_params(params); + + llama_context * ctx = llama_new_context_with_model(model, ctx_params); + + if (ctx == NULL) { + fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); + return 1; + } + + const unsigned int n_kv_max = llama_n_ctx(ctx); + + + const llama_vocab * vocab = llama_get_vocab(ctx); + llama_token bos = llama_token_bos_impl(*vocab); + //llama_token eos = llama_token_eos_impl(*vocab); + + const unsigned int n_vocab = llama_n_vocab(model); + + // decode in batches of ctx_params.n_batch tokens + auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) { + for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { + const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); + + llama_batch batch_view = { + n_tokens, + batch.token + i, + nullptr, + batch.pos + i, + batch.n_seq_id + i, + batch.seq_id + i, + batch.logits + i, + }; + + const int ret = llama_decode(ctx, batch_view); + if (ret != 0) { + LOG("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); + return false; + } + + llama_synchronize(ctx); + } + + return true; + }; + + const unsigned int pp = params.n_ubatch; + const unsigned int tg = params.n_ubatch / 4; + + if (!params.sweep_bench_output_jsonl) { + LOG("\n"); + LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); + LOG("\n"); + LOG("|%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s"); + LOG("|%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "------", "--------", "--------", "--------", "--------"); + } + + llama_batch batch = llama_batch_init(n_kv_max, 0, 1); + + // warm up + { + llama_batch_add(batch, bos, 0, { 0 }, false); + + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG("%s: llama_decode() failed\n", __func__); + return 1; + } + } + + llama_batch_clear(batch); + llama_kv_cache_clear(ctx); + + for (unsigned int n_kv = 0; n_kv < n_kv_max; n_kv += params.n_ubatch) { + // clean up KV cache before generation + llama_kv_cache_seq_rm(ctx, 0, n_kv, -1); + + // first measure token generation performance at this context size + const auto t_tg_start = ggml_time_us(); + + for (unsigned int i = 0; i < tg; ++i) { + llama_batch_clear(batch); + llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true); + + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG("%s: llama_decode() failed\n", __func__); + return 1; + } + } + + const auto t_tg_end = ggml_time_us(); + + // clean up KV cache after generation + llama_kv_cache_seq_rm(ctx, 0, n_kv, -1); + + // prepare batch of pp size for prompt processing performance measurement + llama_batch_clear(batch); + + for (unsigned int i = 0; i < pp; ++i) { + llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false); + } + batch.logits[batch.n_tokens - 1] = true; + + // measure prompt processing performance + const auto t_pp_start = ggml_time_us(); + + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG("%s: llama_decode() failed\n", __func__); + return 1; + } + + const auto t_pp_end = ggml_time_us(); + + // calculate and print metrics + const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; + const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; + + const float speed_pp = pp / t_pp; + const float speed_tg = tg / t_tg; + + if(params.sweep_bench_output_jsonl) { + LOG( + "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, " + "\"pp\": %d, \"tg\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f }\n", + n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, + pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg + ); + } else { + LOG("|%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg); + } + } + + llama_batch_free(batch); + + llama_free(ctx); + llama_free_model(model); + + llama_backend_free(); + + return 0; +} |