diff options
author | Johannes Gäßler <johannesg@5d6.de> | 2024-03-23 01:24:36 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-23 01:24:36 +0100 |
commit | 50ccaf5eacb50a2ca378a4ef0dc7aeb45fead652 (patch) | |
tree | 3ebcfdadf96bb6f3aadd752a1bfe9771ac182d3b /examples | |
parent | 56a00f0a2f48a85376f48b5ce77699df781631ae (diff) |
lookup: complement data from context with general text statistics (#5479)
* lookup: evaluation tools, use corpus/previous gens
* fixup! lookup: evaluation tools, use corpus/previous gens
* fixup! lookup: evaluation tools, use corpus/previous gens
* fixup! lookup: evaluation tools, use corpus/previous gens
* fixup! lookup: evaluation tools, use corpus/previous gens
Diffstat (limited to 'examples')
-rw-r--r-- | examples/lookup/CMakeLists.txt | 18 | ||||
-rw-r--r-- | examples/lookup/lookup-create.cpp | 43 | ||||
-rw-r--r-- | examples/lookup/lookup-merge.cpp | 47 | ||||
-rw-r--r-- | examples/lookup/lookup-stats.cpp | 163 | ||||
-rw-r--r-- | examples/lookup/lookup.cpp | 116 |
5 files changed, 339 insertions, 48 deletions
diff --git a/examples/lookup/CMakeLists.txt b/examples/lookup/CMakeLists.txt index c060b8f5..b91633f6 100644 --- a/examples/lookup/CMakeLists.txt +++ b/examples/lookup/CMakeLists.txt @@ -3,3 +3,21 @@ add_executable(${TARGET} lookup.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) + +set(TARGET lookup-create) +add_executable(${TARGET} lookup-create.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) + +set(TARGET lookup-merge) +add_executable(${TARGET} lookup-merge.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) + +set(TARGET lookup-stats) +add_executable(${TARGET} lookup-stats.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/lookup/lookup-create.cpp b/examples/lookup/lookup-create.cpp new file mode 100644 index 00000000..46a6bed0 --- /dev/null +++ b/examples/lookup/lookup-create.cpp @@ -0,0 +1,43 @@ +#include "ggml.h" +#include "llama.h" +#include "common.h" +#include "ngram-cache.h" + +#include <cstdint> +#include <fstream> +#include <iostream> +#include <string> +#include <unordered_map> +#include <vector> + +int main(int argc, char ** argv){ + gpt_params params; + + if (!gpt_params_parse(argc, argv, params)) { + return 1; + } + // init llama.cpp + llama_backend_init(); + llama_numa_init(params.numa); + + llama_model * model = NULL; + llama_context * ctx = NULL; + + // load the model + std::tie(model, ctx) = llama_init_from_gpt_params(params); + GGML_ASSERT(model != nullptr); + + // tokenize the prompt + const bool add_bos = llama_should_add_bos_token(model); + + std::vector<llama_token> inp; + inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); + fprintf(stderr, "%s: tokenization done\n", __func__); + + + llama_ngram_cache ngram_cache; + llama_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true); + fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str()); + + llama_ngram_cache_save(ngram_cache, params.lookup_cache_static); +} diff --git a/examples/lookup/lookup-merge.cpp b/examples/lookup/lookup-merge.cpp new file mode 100644 index 00000000..07c93eb8 --- /dev/null +++ b/examples/lookup/lookup-merge.cpp @@ -0,0 +1,47 @@ +#include "ggml.h" +#include "llama.h" +#include "common.h" +#include "ngram-cache.h" + +#include <cstdint> +#include <cstdio> +#include <fstream> +#include <iostream> +#include <string> +#include <unordered_map> +#include <vector> + +static void print_usage() { + fprintf(stderr, "Merges multiple lookup cache files into a single one.\n"); + fprintf(stderr, "Usage: lookup-merge [--help] lookup_part_1.bin lookup_part_2.bin ... lookup_merged.bin\n"); +} + +int main(int argc, char ** argv){ + if (argc < 3) { + print_usage(); + exit(1); + } + + std::vector<std::string> args; + args.resize(argc-1); + for (int i = 0; i < argc-1; ++i) { + args[i] = argv[i+1]; + if (args[i] == "-h" || args[i] == "--help") { + print_usage(); + exit(0); + } + } + + fprintf(stderr, "lookup-merge: loading file %s\n", args[0].c_str()); + llama_ngram_cache ngram_cache_merged = llama_ngram_cache_load(args[0]); + + for (size_t i = 1; i < args.size()-1; ++i) { + fprintf(stderr, "lookup-merge: loading file %s\n", args[i].c_str()); + llama_ngram_cache ngram_cache = llama_ngram_cache_load(args[i]); + + llama_ngram_cache_merge(ngram_cache_merged, ngram_cache); + } + + fprintf(stderr, "lookup-merge: saving file %s\n", args.back().c_str()); + llama_ngram_cache_save(ngram_cache_merged, args.back()); +} diff --git a/examples/lookup/lookup-stats.cpp b/examples/lookup/lookup-stats.cpp new file mode 100644 index 00000000..31f22777 --- /dev/null +++ b/examples/lookup/lookup-stats.cpp @@ -0,0 +1,163 @@ +#include "ggml.h" +#include "common.h" +#include "llama.h" +#include "log.h" +#include "ngram-cache.h" + +#include <cmath> +#include <cstdint> +#include <cstdio> +#include <fstream> +#include <string> +#include <vector> +#include <unordered_map> + +int main(int argc, char ** argv){ + gpt_params params; + + if (!gpt_params_parse(argc, argv, params)) { + return 1; + } + + const int n_draft = params.n_draft; + + // init llama.cpp + llama_backend_init(); + llama_numa_init(params.numa); + + llama_model * model = NULL; + llama_context * ctx = NULL; + + // load the model + std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_set_rng_seed(ctx, params.seed); + GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); + + // tokenize the prompt + const bool add_bos = llama_should_add_bos_token(model); + LOG("add_bos tgt: %d\n", add_bos); + + std::vector<llama_token> inp; + inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); + + llama_ngram_cache ngram_cache_context; + llama_ngram_cache ngram_cache_dynamic; + llama_ngram_cache ngram_cache_static; + int64_t t_draft_flat_us = 0; + int64_t t_draft_us = 0; + + { + const int64_t t_start_draft_us = ggml_time_us(); + + if (!params.lookup_cache_static.empty()) { + try { + ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static); + } catch (std::ifstream::failure const &) { + fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); + exit(1); + } + } + + if (!params.lookup_cache_dynamic.empty()) { + try { + ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic); + } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program + } + + t_draft_flat_us += ggml_time_us() - t_start_draft_us; + } + + const int n_input = inp.size(); + const int n_ctx = params.n_ctx; + + int n_drafted = 0; + int n_accept = 0; + + const int64_t t_start_ms = ggml_time_ms(); + + // Iterate over input tokens in chunks of size n_ctx. + // Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility. + for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) { + const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx); + std::vector<llama_token> pseudo_output; + pseudo_output.push_back(inp_slice[0]); + + while ((int) pseudo_output.size() < n_ctx) { + // Simulate drafting and decoding from draft: + std::vector<llama_token> draft; + draft.push_back(pseudo_output.back()); + + { + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); + t_draft_us += ggml_time_us() - t_start_draft_us; + } + + n_drafted += draft.size() - 1; + + for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) { + const llama_token ground_truth = inp_slice[pseudo_output.size()]; + const llama_token drafted = draft[j]; + + if (ground_truth != drafted) { + break; + } + + ++n_accept; + pseudo_output.push_back(ground_truth); + + { + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); + t_draft_us += ggml_time_us() - t_start_draft_us; + } + } + + // After each simulated batch decoding simulate the sampling of a single token: + if ((int) pseudo_output.size() < n_ctx) { + pseudo_output.push_back(inp_slice[pseudo_output.size()]); + { + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); + t_draft_us += ggml_time_us() - t_start_draft_us; + } + } + + draft.erase(draft.begin()); + + } + if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) { + const int64_t t_now_ms = ggml_time_ms(); + const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start; + const int64_t eta_min = eta_ms / (60*1000); + const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000; + + LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s); + } + + // After each chunk, update the dynamic ngram cache with the context ngram cache: + llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); + ngram_cache_context.clear(); + } + + LOG_TEE("\n"); + + LOG_TEE("\n"); + LOG_TEE("n_draft = %d\n", n_draft); + LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx); + LOG_TEE("n_drafted = %d\n", n_drafted); + LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); + LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", + t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); + LOG_TEE("n_accept = %d\n", n_accept); + LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); + + llama_free(ctx); + llama_free_model(model); + + llama_backend_free(); + + fprintf(stderr, "\n\n"); + + return 0; +} diff --git a/examples/lookup/lookup.cpp b/examples/lookup/lookup.cpp index b53fae11..2e8c35de 100644 --- a/examples/lookup/lookup.cpp +++ b/examples/lookup/lookup.cpp @@ -1,12 +1,15 @@ -#include "common.h" #include "ggml.h" #include "llama.h" +#include "common.h" +#include "ngram-cache.h" #include <cmath> #include <cstdint> #include <cstdio> +#include <fstream> #include <string> #include <vector> +#include <unordered_map> int main(int argc, char ** argv){ gpt_params params; @@ -15,11 +18,7 @@ int main(int argc, char ** argv){ return 1; } - // max/min n-grams size to search for in prompt - const int ngram_max = 4; - const int ngram_min = 1; - - // length of the candidate / draft sequence, if match is found + // max. number of additional tokens to draft if match is found const int n_draft = params.n_draft; const bool dump_kv_cache = params.dump_kv_cache; @@ -39,6 +38,8 @@ int main(int argc, char ** argv){ // load the model std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_set_rng_seed(ctx, params.seed); + GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); // tokenize the prompt const bool add_bos = llama_should_add_bos_token(model); @@ -47,6 +48,35 @@ int main(int argc, char ** argv){ std::vector<llama_token> inp; inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); + llama_ngram_cache ngram_cache_context; + llama_ngram_cache ngram_cache_dynamic; + llama_ngram_cache ngram_cache_static; + int64_t t_draft_flat_us = 0; + int64_t t_draft_us = 0; + + { + // Fill up context ngram cache with tokens from user input: + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false); + + if (!params.lookup_cache_static.empty()) { + try { + ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static); + } catch (std::ifstream::failure const &) { + fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); + exit(1); + } + } + + if (!params.lookup_cache_dynamic.empty()) { + try { + ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic); + } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program + } + + t_draft_flat_us += ggml_time_us() - t_start_draft_us; + } + const int max_context_size = llama_n_ctx(ctx); const int max_tokens_list_size = max_context_size - 4; @@ -76,8 +106,6 @@ int main(int argc, char ** argv){ int n_drafted = 0; int n_accept = 0; - int64_t t_draft_us = 0; - int n_past = inp.size(); bool has_eos = false; @@ -129,6 +157,12 @@ int main(int argc, char ** argv){ ++n_past; ++i_dft; inp.push_back(id); + { + // Update context ngram cache with the newly accepted token: + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); + t_draft_us += ggml_time_us() - t_start_draft_us; + } if (params.use_color) { // color accepted draft token @@ -149,6 +183,12 @@ int main(int argc, char ** argv){ draft.clear(); draft.push_back(id); inp.push_back(id); + { + // Update context ngram cache with the newly accepted token: + const int64_t t_start_draft_us = ggml_time_us(); + llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); + t_draft_us += ggml_time_us() - t_start_draft_us; + } break; } @@ -163,44 +203,19 @@ int main(int argc, char ** argv){ llama_batch_clear(batch_tgt); llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true); - // generate n_pred tokens through prompt lookup - auto prompt_lookup = [&]() -> void { - const int inp_size = inp.size(); - for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){ - const llama_token * ngram = &inp[inp_size - ngram_size]; - - for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) { - bool match = true; - for (int j = 0; j < ngram_size; ++j) { - if (inp[i + j] != ngram[j]) { - match = false; - break; - } - } - - if (match) { - const int startIdx = i + ngram_size; - const int endIdx = startIdx + n_draft; - if (endIdx < inp_size) { - for (int j = startIdx; j < endIdx; ++j) { - LOG(" - draft candidate %d: %d\n", j, inp[j]); - draft.push_back(inp[j]); - llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true); - ++n_drafted; - } - return; - } - } - } - } - return; - }; - + // Draft already contains a single token sampled from the model: + GGML_ASSERT(draft.size() == 1); + GGML_ASSERT(draft[0] == inp.back()); const int64_t t_start_draft_us = ggml_time_us(); - prompt_lookup(); + llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); + + for (size_t i = 1; i < draft.size(); ++i) { + llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true); + } t_draft_us += ggml_time_us() - t_start_draft_us; + n_drafted += draft.size() - 1; llama_decode(ctx, batch_tgt); ++n_past; @@ -210,19 +225,24 @@ int main(int argc, char ** argv){ auto t_dec_end = ggml_time_us(); + // Update dynamic ngram cache with context ngram cache and save it to disk: + llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); + llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic); + LOG_TEE("\n\n"); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_TEE("\n"); - LOG_TEE("n_draft = %d\n", n_draft); - LOG_TEE("n_predict = %d\n", n_predict); - LOG_TEE("n_drafted = %d\n", n_drafted); - LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", + LOG_TEE("n_draft = %d\n", n_draft); + LOG_TEE("n_predict = %d\n", n_predict); + LOG_TEE("n_drafted = %d\n", n_drafted); + LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); + LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); - LOG_TEE("n_accept = %d\n", n_accept); - LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); + LOG_TEE("n_accept = %d\n", n_accept); + LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_TEE("\ntarget:\n"); llama_print_timings(ctx); |