summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2024-01-19 15:24:47 +0200
committerGitHub <noreply@github.com>2024-01-19 15:24:47 +0200
commita5cacb22b2114fd9adf61c00cbb237384d86bced (patch)
tree3eb485db573bfb676e4277a259ce5474b0e24f05 /examples
parent9b75cb2b3ccbed3df2e14c1202168db3e5145095 (diff)
imatrix : add README.md
Diffstat (limited to 'examples')
-rw-r--r--examples/imatrix/README.md32
1 files changed, 32 insertions, 0 deletions
diff --git a/examples/imatrix/README.md b/examples/imatrix/README.md
new file mode 100644
index 00000000..578e8fc2
--- /dev/null
+++ b/examples/imatrix/README.md
@@ -0,0 +1,32 @@
+# llama.cpp/examples/imatrix
+
+Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantum models.
+More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
+
+## Usage
+
+```
+./imatrix -m <some_fp_model> -f <some_training_data> [-o <output_file>] [--verbosity <verbosity_level>]
+ [-ofreq num_chunks] [-ow <0 or 1>] [other common params]
+```
+
+Here `-m` with a model name and `-f` with a file containing training data (such as e.g. `wiki.train.raw`) are mandatory.
+The parameters in square brackets are optional and have the following meaning:
+* `-o` (or `--output-file`) specifies the name of the file where the computed data will be stored. If missing `imatrix.dat` is used.
+* `--verbosity` specifies the verbosity level. If set to `0`, no output other than the perplexity of the processed chunks will be generated. If set to `1`, each time the results are saved a message is written to `stderr`. If `>=2`, a message is output each time data is collected for any tensor. Default verbosity level is `1`.
+* `-ofreq` (or `--output-frequency`) specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks)
+* `-ow` (or `--output-weight`) specifies if data will be collected for the `output.weight` tensor. My experience is that it is better to not utilize the importance matrix when quantizing `output.weight`, so this is set to `false` by default.
+
+For faster computation, make sure to use GPU offloading via the `-ngl` argument
+
+## Example
+
+```bash
+LLAMA_CUBLAS=1 make -j
+
+# generate importance matrix (imatrix.dat)
+./imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99
+
+# use the imatrix to perform a Q4_K_M quantization
+./quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m
+```