summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-08-20 17:15:47 +0300
committerGitHub <noreply@github.com>2024-08-20 17:15:47 +0300
commitd259a50ca6fd3a0821abe6a16b73c0b19c5b4651 (patch)
tree4f83bbbbbbd9323192d8c0bceb51de5b0fb620c2 /examples
parenta325745000114a43c1546323f91720db503ed0a9 (diff)
Fused soft cap and SIMD-ified GeLU (#9)
* Softcap: WIP Fuses scale + tanh + scale as used for softcaping in some models. Just CPU for now. ~1.4% for PP-512 on Gemma2-9b, no effect on TG. Somewhat surprisingly the improvement does not increase as I go to longer contexts. Gemma2 does softcap on K*Q, which grows quadratically with context length, so I would have thought the benefit from fusing scale, tanh, scale would increase. But no, no luck. * softcap: CUDA * softcap: CUDA ~1% speedup for Gemma2-9b * softcap: Metal and NEON About 1% speedup. * Simdified gelu Gives ~1% speedup for Gemma2-9b prompt processing on AVX512/AVX2. It looks like the gelu operation is memory bound on my CPU's after SIMD-ifying it. By not using the 128 kb gelu lookup table we gain a small advantage. On the M2-Max the lookup table is slightly faster than the SIMD version, so left the lookup table for ARM_NEON. * softcap, tanh: avoid NaNs for large arguments (AVX2, AVX512) Not that I have encountered this in practice, but just to be sure. This does it for AVX512 and AVX2, still need a guard for ARM_NEON. * llama-bench: add ability to turn off warmup runs So we don't need to wait forever on, e.g., benchmarks involving long contexts. * softcap, tanh: avoid NaNs for large arguments (NEON) --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples')
-rw-r--r--examples/llama-bench/llama-bench.cpp24
1 files changed, 18 insertions, 6 deletions
diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp
index 42918bfc..813d7bae 100644
--- a/examples/llama-bench/llama-bench.cpp
+++ b/examples/llama-bench/llama-bench.cpp
@@ -237,6 +237,7 @@ struct cmd_params {
ggml_numa_strategy numa;
int reps;
bool verbose;
+ bool warmup;
output_formats output_format;
output_formats output_format_stderr;
};
@@ -263,6 +264,7 @@ static const cmd_params cmd_params_defaults = {
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
/* reps */ 5,
/* verbose */ false,
+ /* warmup */ true,
/* output_format */ MARKDOWN,
/* output_format_stderr */ NONE,
};
@@ -295,6 +297,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
+ printf(" -w, --warmup <0|1> (default: %s)\n", cmd_params_defaults.warmup ? "1" : "0");
printf("\n");
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
}
@@ -338,6 +341,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
params.output_format_stderr = cmd_params_defaults.output_format_stderr;
params.reps = cmd_params_defaults.reps;
params.numa = cmd_params_defaults.numa;
+ params.warmup = cmd_params_defaults.warmup;
for (int i = 1; i < argc; i++) {
arg = argv[i];
@@ -555,6 +559,12 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
} else if (arg == "-v" || arg == "--verbose") {
params.verbose = true;
+ } else if (arg == "-w" || arg == "--warmup") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.warmup = std::stoi(argv[i]);
} else {
invalid_param = true;
break;
@@ -1429,12 +1439,14 @@ int main(int argc, char ** argv) {
llama_kv_cache_clear(ctx);
// warmup run
- if (t.n_prompt > 0) {
- //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
- test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
- }
- if (t.n_gen > 0) {
- test_gen(ctx, 1, 0, t.n_threads);
+ if (params.warmup) {
+ if (t.n_prompt > 0) {
+ //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
+ test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
+ }
+ if (t.n_gen > 0) {
+ test_gen(ctx, 1, 0, t.n_threads);
+ }
}
for (int i = 0; i < params.reps; i++) {