diff options
author | slaren <slarengh@gmail.com> | 2023-12-21 21:07:46 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-12-21 21:07:46 +0100 |
commit | d232aca5a73b290e218a2e48b91023d5e994203f (patch) | |
tree | e763648880fad8ef44be54c9cb59c9c7dbda4168 /ggml-alloc.c | |
parent | 31f27758faf4a4bd08101a57c7ec3a473f771f86 (diff) |
llama : initial ggml-backend integration (#4520)
* llama : initial ggml-backend integration
* add ggml-metal
* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set
* add ggml_backend_buffer_clear
zero-init KV cache buffer
* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data
* disable gpu backends with ngl 0
* more accurate mlock
* unmap offloaded part of the model
* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap
* update quantize and lora
* update session copy/set to use ggml-backend
ggml-ci
* use posix_fadvise instead of posix_fadvise64
* ggml_backend_alloc_ctx_tensors_from_buft : remove old print
* llama_mmap::align_offset : use pointers instead of references for out parameters
* restore progress_callback behavior
* move final progress_callback call to load_all_data
* cuda : fix fprintf format string (minor)
* do not offload scales
* llama_mmap : avoid unmapping the same fragments again in the destructor
* remove unnecessary unmap
* metal : add default log function that prints to stderr, cleanup code
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'ggml-alloc.c')
-rw-r--r-- | ggml-alloc.c | 16 |
1 files changed, 12 insertions, 4 deletions
diff --git a/ggml-alloc.c b/ggml-alloc.c index d3049efb..a97436b1 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -449,11 +449,10 @@ static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool upd if (update_backend) { view->backend = view->view_src->backend; } - view->buffer = view->view_src->buffer; + // views are initialized in the alloc buffer rather than the view_src buffer + view->buffer = alloc->buffer; view->data = (char *)view->view_src->data + view->view_offs; - // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend - // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft); if (!alloc->measure) { @@ -736,6 +735,10 @@ void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) { } void ggml_allocr_free(ggml_allocr_t alloc) { + if (alloc == NULL) { + return; + } + ggml_gallocr_free(alloc->galloc); ggml_tallocr_free(alloc->talloc); free(alloc); @@ -775,7 +778,7 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte } if (nbytes == 0) { - fprintf(stderr, "%s: no tensors to allocate\n", __func__); + // all the tensors in the context are already allocated return NULL; } @@ -789,6 +792,11 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte } else { ggml_backend_view_init(buffer, t); } + } else { + if (t->view_src != NULL) { + // view of a pre-allocated tensor + ggml_backend_view_init(buffer, t); + } } } |