diff options
author | Georgi Gerganov <ggerganov@gmail.com> | 2023-10-08 20:19:14 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-10-08 20:19:14 +0300 |
commit | db3abcc114d5d1790ba814aa1a80ac673d4ccc3e (patch) | |
tree | 954cce12ac9d40fccf5dd3d9298efedd1d67e7d0 /ggml-backend.c | |
parent | eee42c670e6fa6df9cf17e7ffc319f74cbd81354 (diff) |
sync : ggml (ggml-backend) (#3548)
* sync : ggml (ggml-backend)
ggml-ci
* zig : add ggml-backend to the build
Diffstat (limited to 'ggml-backend.c')
-rw-r--r-- | ggml-backend.c | 385 |
1 files changed, 385 insertions, 0 deletions
diff --git a/ggml-backend.c b/ggml-backend.c new file mode 100644 index 00000000..ca8d83da --- /dev/null +++ b/ggml-backend.c @@ -0,0 +1,385 @@ +#include "ggml-backend.h" +#include "ggml-alloc.h" + +#include <assert.h> +#include <stdarg.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +#define UNUSED GGML_UNUSED + +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +// backend buffer + +ggml_backend_buffer_t ggml_backend_buffer_init( + struct ggml_backend * backend, + struct ggml_backend_buffer_i iface, + ggml_backend_buffer_context_t context, + size_t size) { + ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer)); + + GGML_ASSERT(iface.get_base != NULL); + + (*buffer) = (struct ggml_backend_buffer) { + /* .interface = */ iface, + /* .backend = */ backend, + /* .context = */ context, + /* .size = */ size, + }; + + return buffer; +} + +void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { + if (buffer->iface.free_buffer != NULL) { + buffer->iface.free_buffer(buffer); + } + free(buffer); +} + +size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) { + return ggml_backend_get_alignment(buffer->backend); +} + +void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { + return buffer->iface.get_base(buffer); +} + +size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { + return buffer->size; +} + +size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + if (buffer->iface.get_alloc_size) { + return buffer->iface.get_alloc_size(buffer, tensor); + } + return ggml_nbytes(tensor); +} + +void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + if (buffer->iface.init_tensor) { + buffer->iface.init_tensor(buffer, tensor); + } +} + +void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + if (buffer->iface.free_tensor) { + buffer->iface.free_tensor(buffer, tensor); + } +} + +// backend + +ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) { + return tensor->buffer->backend; +} + +const char * ggml_backend_name(ggml_backend_t backend) { + return backend->iface.get_name(backend); +} + +void ggml_backend_free(ggml_backend_t backend) { + backend->iface.free(backend); +} + +ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) { + return backend->iface.alloc_buffer(backend, size); +} + +size_t ggml_backend_get_alignment(ggml_backend_t backend) { + return backend->iface.get_alignment(backend); +} + +void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); +} + +void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); +} + +void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); + ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor)); +} + +void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); + ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor)); +} + +void ggml_backend_synchronize(ggml_backend_t backend) { + backend->iface.synchronize(backend); +} + +ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + return backend->iface.graph_plan_create(backend, cgraph); +} + +void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + backend->iface.graph_plan_free(backend, plan); +} + +void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + backend->iface.graph_plan_compute(backend, plan); +} + +void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + backend->iface.graph_compute(backend, cgraph); +} + +bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + return backend->iface.supports_op(backend, op); +} + +// backend copy + +static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { + if (a->type != b->type) { + return false; + } + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (a->ne[i] != b->ne[i]) { + return false; + } + if (a->nb[i] != b->nb[i]) { + return false; + } + } + return true; +} + +void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { + //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]); + //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]); + GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); + + // printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src)); + + if (src == dst) { + return; + } + + // TODO: allow backends to support copy to/from same backend + + if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) { + ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst); + } else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) { + ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst); + } else { + // shouldn't be hit when copying from/to CPU + #ifndef NDEBUG + fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend)); + #endif + size_t nbytes = ggml_nbytes(src); + void * data = malloc(nbytes); + ggml_backend_tensor_get(src, data, 0, nbytes); + ggml_backend_tensor_set(dst, data, 0, nbytes); + free(data); + } +} + +// backend CPU + +struct ggml_backend_cpu_context { + int n_threads; + void * work_data; + size_t work_size; +}; + +static const char * ggml_backend_cpu_name(ggml_backend_t backend) { + return "CPU"; + + UNUSED(backend); +} + +static void ggml_backend_cpu_free(ggml_backend_t backend) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + free(cpu_ctx->work_data); + free(cpu_ctx); + free(backend); +} + +static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { + return (void *)buffer->context; +} + +static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { + free(buffer->context); + UNUSED(buffer); +} + +static struct ggml_backend_buffer_i cpu_backend_buffer_i = { + /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, + /* .get_base = */ ggml_backend_cpu_buffer_get_base, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .init_tensor = */ NULL, // no initialization required + /* .free_tensor = */ NULL, // no cleanup required +}; + +// for buffers from ptr, free is not called +static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { + /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed + /* .get_base = */ ggml_backend_cpu_buffer_get_base, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .init_tensor = */ NULL, + /* .free_tensor = */ NULL, +}; + +static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 + +static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) { + size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned + void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC? + + return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size); +} + +static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) { + return TENSOR_ALIGNMENT; + UNUSED(backend); +} + +static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy((char *)tensor->data + offset, data, size); + + UNUSED(backend); +} + +static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy(data, (const char *)tensor->data + offset, size); + + UNUSED(backend); +} + +static void ggml_backend_cpu_synchronize(ggml_backend_t backend) { + UNUSED(backend); +} + +static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + // for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends + ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +struct ggml_backend_plan_cpu { + struct ggml_cplan cplan; + struct ggml_cgraph cgraph; +}; + +static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + + struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); + + cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + cpu_plan->cgraph = *cgraph; + + if (cpu_plan->cplan.work_size > 0) { + cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); + } + + return cpu_plan; +} + +static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; + + free(cpu_plan->cplan.work_data); + free(cpu_plan); + + UNUSED(backend); +} + +static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; + + ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); + + UNUSED(backend); +} + +static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + + struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + + if (cpu_ctx->work_size < cplan.work_size) { + // TODO: may be faster to free and use malloc to avoid the copy + cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size); + cpu_ctx->work_size = cplan.work_size; + } + + cplan.work_data = cpu_ctx->work_data; + + ggml_graph_compute(cgraph, &cplan); +} + +static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + return true; + UNUSED(backend); + UNUSED(op); +} + +static struct ggml_backend_i cpu_backend_i = { + /* .get_name = */ ggml_backend_cpu_name, + /* .free = */ ggml_backend_cpu_free, + /* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer, + /* .get_alignment = */ ggml_backend_cpu_get_alignment, + /* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async, + /* .synchronize = */ ggml_backend_cpu_synchronize, + /* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from, + /* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to, + /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create, + /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free, + /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, + /* .graph_compute = */ ggml_backend_cpu_graph_compute, + /* .supports_op = */ ggml_backend_cpu_supports_op, +}; + +ggml_backend_t ggml_backend_cpu_init(void) { + struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); + + ctx->n_threads = GGML_DEFAULT_N_THREADS; + ctx->work_data = NULL; + ctx->work_size = 0; + + ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend)); + + *cpu_backend = (struct ggml_backend) { + /* .interface = */ cpu_backend_i, + /* .context = */ ctx + }; + return cpu_backend; +} + +bool ggml_backend_is_cpu(ggml_backend_t backend) { + return backend->iface.get_name == ggml_backend_cpu_name; +} + +void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { + GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); + + struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; + ctx->n_threads = n_threads; +} + +ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) { + return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size); +} |