summaryrefslogtreecommitdiff
path: root/ggml-cuda.cu
diff options
context:
space:
mode:
authorJidongZhang-THU <1119708529@qq.com>2024-01-31 21:10:15 +0800
committerGitHub <noreply@github.com>2024-01-31 15:10:15 +0200
commit15606309a05ccf7fadbaad5538cb7c32acb1e06b (patch)
treeaae8b8e0977922438c1e514e961f7c8bea2dcb9a /ggml-cuda.cu
parentb2b9f025e7821e78bd501d75d01838c26de07a57 (diff)
llava : add MobileVLM support (#5132)
* New Feature: 1. Sum_Rows: fix cuda kernel overflow fix block shape error when nrows too big 2. Im2Col: Support Batch in cuda Support f32 to f32 both in cpu && cuda 3. DepthWiseConv: Support by Im2Col && MulMat 4. Pool_2d: Supoort avg pooling in cuda 5. HardSigmoid: Imp in cuda 6. HardSwish: Imp in cuda * fix tabs instead of spaces * code clean * CUDA POOL2D * ADD POOL2D test case in test-backend-ops.cpp * code clean * fix pool2d_kernel nits * fix bug in pool2d kernel * fix avg pooling, count_include_pad nits * test-backend-ops : add more pool_2d tests * cuda : fix warnings and formatting * ggml : check types in release builds too in pool_2d * test-backend-ops : remove f16 pool_2d tests * cuda : more style fixes * Add assert in ggml_cuda_op_pool2d * pool2d float padding fallback * test-backend-ops : add dst_type to im2col --------- Co-authored-by: slaren <slarengh@gmail.com>
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r--ggml-cuda.cu209
1 files changed, 192 insertions, 17 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index 949bc8a1..e5659574 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -524,6 +524,8 @@ static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong
#define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_TANH_BLOCK_SIZE 256
#define CUDA_RELU_BLOCK_SIZE 256
+#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
+#define CUDA_HARDSWISH_BLOCK_SIZE 256
#define CUDA_SQR_BLOCK_SIZE 256
#define CUDA_CPY_BLOCK_SIZE 32
#define CUDA_SCALE_BLOCK_SIZE 256
@@ -540,6 +542,7 @@ static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong
#define CUDA_PAD_BLOCK_SIZE 256
#define CUDA_ACC_BLOCK_SIZE 256
#define CUDA_IM2COL_BLOCK_SIZE 256
+#define CUDA_POOL2D_BLOCK_SIZE 256
#define CUDA_Q8_0_NE_ALIGN 2048
@@ -823,6 +826,24 @@ static __global__ void relu_f32(const float * x, float * dst, const int k) {
dst[i] = fmaxf(x[i], 0);
}
+static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
+}
+
+static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
+}
+
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
@@ -5823,7 +5844,7 @@ static __global__ void alibi_f32(const float * x, float * dst, const int ncols,
}
static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.y;
+ const int row = blockIdx.x;
const int col = threadIdx.x;
float sum = 0.0f;
@@ -6145,9 +6166,10 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
}
-static __global__ void im2col_f32_f16(
- const float * x, half * dst,
- int offset_delta, int IW, int IH, int OW, int KW, int KH, int pelements, int CHW,
+template <typename T>
+static __global__ void im2col_kernel(
+ const float * x, T * dst, int batch_offset,
+ int offset_delta, int IC, int IW, int IH, int OH, int OW, int KW, int KH, int pelements, int CHW,
int s0, int s1, int p0, int p1, int d0, int d1) {
const int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= pelements) {
@@ -6160,21 +6182,73 @@ static __global__ void im2col_f32_f16(
const int ky = (i - kd) / OW;
const int ix = i % OW;
+ const int oh = blockIdx.y;
+ const int batch = blockIdx.z / IC;
+ const int ic = blockIdx.z % IC;
+
const int64_t iiw = ix * s0 + kx * d0 - p0;
- const int64_t iih = blockIdx.y * s1 + ky * d1 - p1;
+ const int64_t iih = oh * s1 + ky * d1 - p1;
const int64_t offset_dst =
- (blockIdx.y * OW + ix) * CHW +
- (blockIdx.z * (KW * KH) + ky * KW + kx);
+ ((batch * OH + oh) * OW + ix) * CHW +
+ (ic * (KW * KH) + ky * KW + kx);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst[offset_dst] = __float2half(0.0f);
+ dst[offset_dst] = 0.0f;
} else {
- const int64_t offset_src = blockIdx.z * offset_delta;
- dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
+ const int64_t offset_src = ic * offset_delta + batch * batch_offset;
+ dst[offset_dst] = x[offset_src + iih * IW + iiw];
}
}
+template <typename Ti, typename To>
+static __global__ void pool2d_nchw_kernel(
+ const int ih, const int iw, const int oh, const int ow,
+ const int kh, const int kw, const int sh, const int sw,
+ const int ph, const int pw, const int parallel_elements,
+ const Ti* src, To* dst, const enum ggml_op_pool op) {
+ int idx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (idx >= parallel_elements) {
+ return;
+ }
+
+ const int I_HW = ih * iw;
+ const int O_HW = oh * ow;
+ const int nc = idx / O_HW;
+ const int cur_oh = idx % O_HW / ow;
+ const int cur_ow = idx % O_HW % ow;
+ const Ti* i_ptr = src + nc * I_HW;
+ To* o_ptr = dst + nc * O_HW;
+ const int start_h = cur_oh * sh - ph;
+ const int bh = max(0, start_h);
+ const int eh = min(ih, start_h + kh);
+ const int start_w = cur_ow * sw - pw;
+ const int bw = max(0, start_w);
+ const int ew = min(iw, start_w + kw);
+ const To scale = 1. / (kh * kw);
+ To res = 0;
+
+ switch (op) {
+ case GGML_OP_POOL_AVG: res = 0; break;
+ case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
+ }
+
+ for (int i = bh; i < eh; i += 1) {
+ for (int j = bw; j < ew; j += 1) {
+ #if __CUDA_ARCH__ >= 350
+ Ti cur = __ldg(i_ptr + i * iw + j);
+ #else
+ Ti cur = i_ptr[i * iw + j];
+ #endif
+ switch (op) {
+ case GGML_OP_POOL_AVG: res += cur * scale; break;
+ case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
+ }
+ }
+ }
+ o_ptr[cur_oh * ow + cur_ow] = res;
+}
+
template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
@@ -6388,6 +6462,16 @@ static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
+static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
+ hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
+ hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
@@ -7475,7 +7559,7 @@ static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const
static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
const dim3 block_dims(WARP_SIZE, 1, 1);
- const dim3 block_nums(1, nrows, 1);
+ const dim3 block_nums(nrows, 1, 1);
k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
}
@@ -7587,14 +7671,15 @@ static void soft_max_f32_cuda(const float * x, const float * y, float * dst, con
}
}
-static void im2col_f32_f16_cuda(const float* x, half* dst,
+template <typename T>
+static void im2col_cuda(const float* x, T* dst,
int IW, int IH, int OW, int OH, int KW, int KH, int IC,
- int offset_delta,
+ int batch, int batch_offset, int offset_delta,
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
const int parallel_elements = OW * KW * KH;
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
- dim3 block_nums(num_blocks, OH, IC);
- im2col_f32_f16<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, offset_delta, IW, IH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
+ dim3 block_nums(num_blocks, OH, batch * IC);
+ im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
}
// buffer pool for cuda
@@ -8179,6 +8264,34 @@ static void ggml_cuda_op_relu(
(void) src1_dd;
}
+static void ggml_cuda_op_hardsigmoid(
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ hardsigmoid_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+static void ggml_cuda_op_hardswish(
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ hardswish_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
static void ggml_cuda_op_leaky_relu(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
@@ -8810,13 +8923,46 @@ static void ggml_cuda_op_alibi(
(void) src1_dd;
}
+static void ggml_cuda_op_pool2d(
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+ enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
+ const int k0 = opts[1];
+ const int k1 = opts[2];
+ const int s0 = opts[3];
+ const int s1 = opts[4];
+ const int p0 = opts[5];
+ const int p1 = opts[6];
+
+ const int64_t IH = src0->ne[1];
+ const int64_t IW = src0->ne[0];
+
+ const int64_t N = dst->ne[3];
+ const int64_t OC = dst->ne[2];
+ const int64_t OH = dst->ne[1];
+ const int64_t OW = dst->ne[0];
+
+ const int parallel_elements = N * OC * OH * OW;
+ const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
+ dim3 block_nums(num_blocks);
+ pool2d_nchw_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, main_stream>>>(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_dd, dst_dd, op);
+
+ (void) src1;
+ (void) src1_dd;
+}
+
static void ggml_cuda_op_im2col(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16);
+ GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
@@ -8838,8 +8984,14 @@ static void ggml_cuda_op_im2col(
const int64_t OW = dst->ne[1];
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
+ const int64_t batch = src1->ne[3];
+ const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
- im2col_f32_f16_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
+ if(dst->type == GGML_TYPE_F16) {
+ im2col_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
+ } else {
+ im2col_cuda(src1_dd, (float*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
+ }
(void) src0;
(void) src0_dd;
@@ -9435,6 +9587,13 @@ static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, g
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
}
+static void ggml_cuda_hardsigmoid(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardsigmoid);
+}
+
+static void ggml_cuda_hardswish(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardswish);
+}
static void ggml_cuda_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_leaky_relu);
}
@@ -10220,6 +10379,10 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
}
+static void ggml_cuda_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pool2d);
+}
+
static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
}
@@ -10321,6 +10484,12 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
case GGML_UNARY_OP_RELU:
func = ggml_cuda_relu;
break;
+ case GGML_UNARY_OP_HARDSIGMOID:
+ func = ggml_cuda_hardsigmoid;
+ break;
+ case GGML_UNARY_OP_HARDSWISH:
+ func = ggml_cuda_hardswish;
+ break;
default:
return false;
}
@@ -10395,6 +10564,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
case GGML_OP_IM2COL:
func = ggml_cuda_im2col;
break;
+ case GGML_OP_POOL_2D:
+ func = ggml_cuda_pool2d;
+ break;
case GGML_OP_SUM_ROWS:
func = ggml_cuda_sum_rows;
break;
@@ -11123,6 +11295,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
+ case GGML_UNARY_OP_HARDSIGMOID:
+ case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
return true;
@@ -11221,6 +11395,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_ROPE:
case GGML_OP_ALIBI:
case GGML_OP_IM2COL:
+ case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC: