diff options
author | Georgi Gerganov <ggerganov@gmail.com> | 2023-11-13 16:55:52 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-11-13 16:55:52 +0200 |
commit | 3d68f364f15778dc326f5024f2e5af1ad6dfddef (patch) | |
tree | c0c11d150ba56b4f646261790728622efa30d8a1 /ggml-cuda.cu | |
parent | c049b37d7baf558944501705b91ac89b26ee3e41 (diff) |
ggml : sync (im2col, GPU conv, 32-bit arm compat) (#4060)
ggml-ci
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r-- | ggml-cuda.cu | 106 |
1 files changed, 104 insertions, 2 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 16340244..7be63925 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -4489,6 +4489,13 @@ static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) { *dsti = __float2half(*xi); } +static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) { + const half * xi = (const half *) cxi; + half * dsti = (half *) cdsti; + + *dsti = *xi; +} + template <cpy_kernel_t cpy_1> static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int nb00, const int nb01, const int nb02, @@ -4742,6 +4749,25 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min, dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]); } +static __global__ void im2col_f32_f16( + const float * x, half * dst, + int ofs0, int ofs1, int IW, int IH, int CHW, + int s0, int s1, int p0, int p1, int d0, int d1) { + const int iiw = blockIdx.z * s0 + threadIdx.z * d0 - p0; + const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1; + + const int offset_dst = + (threadIdx.x * gridDim.y * gridDim.z + blockIdx.y * gridDim.z + blockIdx.z) * CHW + + (blockIdx.x * (blockDim.y * blockDim.z) + threadIdx.y * blockDim.z + threadIdx.z); + + if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { + dst[offset_dst] = __float2half(0.0f); + } else { + const int offset_src = threadIdx.x * ofs0 + blockIdx.x * ofs1; + dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]); + } +} + template<int qk, int qr, dequantize_kernel_t dq> static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) { const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); @@ -5642,6 +5668,16 @@ static void ggml_cpy_f32_f16_cuda( (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12); } +static void ggml_cpy_f16_f16_cuda( + const char * cx, char * cdst, const int ne, + const int ne00, const int ne01, const int nb00, const int nb01, const int nb02, + const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) { + + const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; + cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>> + (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12); +} + static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE; scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k); @@ -5725,6 +5761,15 @@ static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, c soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x); } +static void im2col_f32_f16_cuda(const float * x, half * dst, + int OH, int IW, int IH, int OW, int IC, + int KH, int KW, int N, int ofs0, int ofs1, + int s0, int s1, int p0, int p1, int d0, int d1, cudaStream_t stream) { + dim3 block_nums(IC, OH, OW); + dim3 block_dims(N, KH, KW); + im2col_f32_f16<<<block_nums, block_dims, 0, stream>>>(x, dst, ofs0, ofs1, IW, IH, (IC * KH * KW), s0, s1, p0, p1, d0, d1); +} + // buffer pool for cuda #define MAX_CUDA_BUFFERS 256 @@ -6522,8 +6567,7 @@ inline void ggml_cuda_op_mul_mat_cublas( src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as); to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream); } - const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16; - + const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16; size_t dst_as = 0; half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as); @@ -6698,6 +6742,45 @@ inline void ggml_cuda_op_alibi( (void) src1_dd; } +inline void ggml_cuda_op_im2col( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F16); + + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t*)(dst->op_params))[1]; + const int32_t p0 = ((const int32_t*)(dst->op_params))[2]; + const int32_t p1 = ((const int32_t*)(dst->op_params))[3]; + const int32_t d0 = ((const int32_t*)(dst->op_params))[4]; + const int32_t d1 = ((const int32_t*)(dst->op_params))[5]; + + const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1; + + const int64_t N = src1->ne[is_2D ? 3 : 2]; + const int64_t IC = src1->ne[is_2D ? 2 : 1]; + const int64_t IH = is_2D ? src1->ne[1] : 1; + const int64_t IW = src1->ne[0]; + + const int64_t KH = is_2D ? src0->ne[1] : 1; + const int64_t KW = src0->ne[0]; + + const int64_t OH = is_2D ? dst->ne[2] : 1; + const int64_t OW = dst->ne[1]; + + const size_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32 + const size_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32 + + im2col_f32_f16_cuda(src1_dd, (half*) dst_dd, + OH, IW, IH, OW, IC, KH, KW, N, + ofs0, ofs1, s0, s1, p0, p1, d0, d1, main_stream); + + (void) src0; + (void) src0_dd; +} + inline void ggml_cuda_op_diag_mask_inf( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { @@ -7610,6 +7693,9 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream); + } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { + ggml_cpy_f16_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, + ne10, ne11, nb10, nb11, nb12, main_stream); } else { fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type), ggml_type_name(src1->type)); @@ -7641,6 +7727,10 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi); } +void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col); +} + static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { (void) src0; (void) src1; @@ -7934,6 +8024,15 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ return false; } + if (tensor->op == GGML_OP_MUL_MAT) { + if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) { +#ifndef NDEBUG + fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %d, src1->ne[3] = %d - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]); +#endif + return false; + } + } + switch (tensor->op) { case GGML_OP_REPEAT: func = ggml_cuda_repeat; @@ -8012,6 +8111,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ case GGML_OP_ALIBI: func = ggml_cuda_alibi; break; + case GGML_OP_IM2COL: + func = ggml_cuda_im2col; + break; default: return false; } |