summaryrefslogtreecommitdiff
path: root/ggml-cuda.cu
diff options
context:
space:
mode:
authorJohannes Gäßler <johannesg@5d6.de>2024-06-05 16:53:00 +0200
committerGitHub <noreply@github.com>2024-06-05 16:53:00 +0200
commit7d1a378b8fb266782d9248538a661405aad80768 (patch)
tree7ce459a4c5a85e75f75825772124aedc3bb54b7f /ggml-cuda.cu
parent2b3389677a833cee0880226533a1768b1a9508d2 (diff)
CUDA: refactor mmq, dmmv, mmvq (#7716)
* CUDA: refactor mmq, dmmv, mmvq * fix out-of-bounds write * struct for qk, qr, qi * fix cmake build * mmq_type_traits
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r--ggml-cuda.cu84
1 files changed, 9 insertions, 75 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index c81c6a0d..dad8a9e2 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -633,88 +633,22 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
// cuda split buffer
-static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
- int64_t min_compute_capability = INT_MAX;
- int64_t max_compute_capability = INT_MIN;
+static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
+ int64_t row_rounding = 0;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
- if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
- min_compute_capability = ggml_cuda_info().devices[id].cc;
- }
- if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
- max_compute_capability = ggml_cuda_info().devices[id].cc;
- }
+ if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
+ continue;
}
- }
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- return max_compute_capability >= CC_RDNA2 ? 128 : 32;
- case GGML_TYPE_Q3_K:
- return min_compute_capability < CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- default:
- GGML_ASSERT(false);
- }
-#else
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q6_K:
- return 64;
- default:
- GGML_ASSERT(false);
+ const int cc = ggml_cuda_info().devices[id].cc;
+ row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc, get_mmq_x_max_host(cc)));
}
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ return row_rounding;
}
static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
const int64_t nrows = ggml_nrows(tensor);
- const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
+ const int64_t rounding = get_row_rounding(tensor_split);
*row_low = id == 0 ? 0 : nrows*tensor_split[id];
*row_low -= *row_low % rounding;
@@ -1499,7 +1433,7 @@ static void ggml_cuda_op_mul_mat(
// for multi GPU, get the row boundaries from tensor split
// and round to mul_mat_q tile sizes
if (split) {
- const int64_t rounding = get_row_rounding(src0->type, tensor_split);
+ const int64_t rounding = get_row_rounding(tensor_split);
if (id != 0) {
dev[id].row_low = ne01*tensor_split[id];