diff options
author | Johannes Gäßler <johannesg@5d6.de> | 2023-05-20 14:19:28 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-05-20 15:19:28 +0300 |
commit | affc76edfdefa7b326f526e463cc65ff13fcfb92 (patch) | |
tree | 6f197652f2d8cba9d585fc0d1baab3733421c623 /ggml-cuda.cu | |
parent | ea600071cb005267e9e8f2629c1e406dd5fde083 (diff) |
cuda : loading models directly into VRAM, norm calculation on GPU, broadcasting for ggml_mul (#1483)
* Broadcasting for ggml_mul
* CUDA kernel for ggml_mul, norms in VRAM
* GPU weights not in RAM, direct loading with cuFile
* fixup! GPU weights not in RAM, direct loading with cuFile
* fixup! GPU weights not in RAM, direct loading with cuFile
* define default model path once, sync path with readme (#1366)
* ~7% faster Q5_1 AVX2 code (#1477)
* convert.py: Support models which are stored in a single pytorch_model.bin (#1469)
* Support models in a single pytorch_model.bin
* Remove spurious line with typo
* benchmark-matmul: Print the average of the test results (#1490)
* Remove unused n_parts parameter (#1509)
* Fixes #1511 lambda issue for w64devkit (mingw) (#1513)
* Fix for w64devkit and mingw
* make kv_f16 the default for api users (#1517)
* minor : fix compile warnings
* readme : adds WizardLM to the list of supported models (#1485)
* main : make reverse prompt option act as a stop token in non-interactive mode (#1032)
* Make reverse prompt option act as a stop token in non-interactive scenarios
* Making requested review changes
* Update gpt_params_parse and fix a merge error
* Revert "Update gpt_params_parse and fix a merge error"
This reverts commit 2bb2ff1748513591ad45b175a75ed1d8089d84c8.
* Update gpt_params_parse and fix a merge error take 2
* examples : add persistent chat (#1495)
* examples : add persistent chat
* examples : fix whitespace
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* tests : add missing header
* ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508)
* ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0
* llama : bump LLAMA_FILE_VERSION to 3
* cuda : update Q4 and Q8 dequantize kernels
* ggml : fix AVX dot products
* readme : update performance table + hot topics
* ggml : fix scalar implementation of Q4_1 dot
* llama : fix compile warnings in llama_set_state_data()
* llama : fix name shadowing and C4146 (#1526)
* Fix name shadowing and C4146
* Fix if macros not using defined when required
* Update llama-util.h
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
* Update llama-util.h
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
* Code style
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Fix for mingw (#1462)
* llama : add llama_init_backend() API (close #1527)
* feature : add blis and other BLAS implementation support (#1502)
* feature: add blis support
* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927
* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake
* Fix typo in INTEGER
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Revert "feature : add blis and other BLAS implementation support (#1502)"
This reverts commit 07e9ace0f9da424d82e75df969642522880feb92.
* GPU weights not in RAM, direct loading with cuFile
* llama : code style fixes + progress print fix
* ggml : ggml_mul better broadcast support
* cmake : workarounds for cufile when CMake version < 3.25
* gg rebase fixup
* Loop in llama.cpp, fixed progress callback
* Attempt clang-tidy fix
* llama : fix vram size computation
* Add forgotten fclose()
---------
Co-authored-by: András Salamon <ott2@users.noreply.github.com>
Co-authored-by: Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
Co-authored-by: Tom Jobbins <784313+TheBloke@users.noreply.github.com>
Co-authored-by: rankaiyx <rankaiyx@rankaiyx.com>
Co-authored-by: Stephan Walter <stephan@walter.name>
Co-authored-by: DannyDaemonic <DannyDaemonic@gmail.com>
Co-authored-by: Erik Scholz <Green-Sky@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: David Kennedy <dakennedyd@gmail.com>
Co-authored-by: Jason McCartney <jmac@theroot.org>
Co-authored-by: Evan Jones <evan.q.jones@gmail.com>
Co-authored-by: Maxime <672982+maximegmd@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Zenix <zenixls2@gmail.com>
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r-- | ggml-cuda.cu | 123 |
1 files changed, 119 insertions, 4 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 688bcf79..35d2e457 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -83,9 +83,19 @@ typedef struct { } block_q8_0; static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding"); +#define CUDA_MUL_BLOCK_SIZE 256 #define CUDA_DEQUANTIZE_BLOCK_SIZE 256 #define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec +static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= kx) { + return; + } + dst[i] = x[i] * y[i%ky]; +} + static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q4_0 * x = (const block_q4_0 *) vx; @@ -228,6 +238,11 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, } } +static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) { + const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE; + mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky); +} + static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); @@ -467,6 +482,67 @@ static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor } } +static void ggml_cuda_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src1->backend == GGML_BACKEND_CUDA); + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[2]; + const int64_t ne0 = ne00 * ne01 * ne02 * ne03; + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + size_t x_size, d_size; + + float * d_X = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &x_size); // src0 + float * d_Y = (float *) src1->data; // src1 is already on device, broadcasted. + float * d_D = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &d_size); // dst + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + const int i0 = i03*ne02 + i02; + float * c_X2 = d_X + i0*ne01*ne00; + float * c_D2 = d_D + i0*ne01*ne00; + + cudaStream_t cudaStream = g_cudaStreams[i0 % GGML_CUDA_MAX_STREAMS]; + cudaStream_t cudaStream2 = g_cudaStreams2[i0 % GGML_CUDA_MAX_STREAMS]; + cudaEvent_t cudaEvent = g_cudaEvents[i0 % GGML_CUDA_MAX_EVENTS]; + + // copy src0 to device + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X2, src0, i03, i02, cudaStream2)); + CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); + + // wait for data + CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); + + for (int64_t i01 = 0; i01 < ne01; i01++) { + const int64_t i13 = i03%ne13; + const int64_t i12 = i02%ne12; + const int64_t i11 = i01%ne11; + const int i1 = i13*ne12*ne11 + i12*ne11 + i11; + + float * c_X1 = c_X2 + i01*ne00; + float * c_Y = d_Y + i1*ne10; + float * c_D1 = c_D2 + i01*ne00; + + // compute + mul_f32_cuda(c_X1, c_Y, c_D1, ne00, ne10, cudaStream); + CUDA_CHECK(cudaGetLastError()); + } + + // copy dst to host + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + CUDA_CHECK(cudaMemcpyAsync(d, c_D2, sizeof(float)*ne00*ne01, cudaMemcpyDeviceToHost, cudaStream)); + } + } + CUDA_CHECK(cudaDeviceSynchronize()); + ggml_cuda_pool_free(d_X, x_size); + ggml_cuda_pool_free(d_D, d_size); +} + static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; @@ -724,6 +800,11 @@ static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor ggml_cuda_pool_free(d_Q, q_size); } +void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); + ggml_cuda_mul_f32(src0, src1, dst); +} + bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { const int64_t ne10 = src1->ne[0]; @@ -797,14 +878,48 @@ void ggml_cuda_transform_tensor(ggml_tensor * tensor) { const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type); size_t q_size; - char * d_Q = (char *) ggml_cuda_pool_malloc(q_sz, &q_size); + char * dst = (char *) ggml_cuda_pool_malloc(q_sz, &q_size); cudaStream_t cudaStream2 = g_cudaStreams2[0]; // copy tensor to device - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, tensor, 0, 0, cudaStream2)); - CUDA_CHECK(cudaDeviceSynchronize()); + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = 0; i2 < ne2; i2++) { + int i = i3*ne2 + i2; + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(dst + i*ne0*ne1, tensor, i3, i2, cudaStream2)); + } + } - tensor->data = d_Q; + tensor->data = dst; tensor->backend = GGML_BACKEND_CUDA; } + +void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { + FILE * fp = fopen(fname, "rb"); + + const size_t size = ggml_nbytes(tensor); + + void * buf; + CUDA_CHECK(cudaMalloc(&buf, size)); + void * buf_host = malloc(size); + +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, SEEK_SET); +#else + int ret = fseek(fp, (long) offset, SEEK_SET); +#endif + GGML_ASSERT(ret == 0); // same + + size_t ret2 = fread(buf_host, size, 1, fp); + if (ret2 != 1) { + fprintf(stderr, "unexpectedly reached end of file"); + exit(1); + } + + cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice); + cudaDeviceSynchronize(); + + tensor->data = buf; + free(buf_host); + fclose(fp); +} |