summaryrefslogtreecommitdiff
path: root/ggml-cuda/mmvq.cuh
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml-cuda/mmvq.cuh
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml-cuda/mmvq.cuh')
-rw-r--r--ggml-cuda/mmvq.cuh7
1 files changed, 0 insertions, 7 deletions
diff --git a/ggml-cuda/mmvq.cuh b/ggml-cuda/mmvq.cuh
deleted file mode 100644
index 88c42c4b..00000000
--- a/ggml-cuda/mmvq.cuh
+++ /dev/null
@@ -1,7 +0,0 @@
-#include "common.cuh"
-
-void ggml_cuda_op_mul_mat_vec_q(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream);