diff options
author | 0cc4m <picard12@live.de> | 2024-01-28 18:03:59 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-01-28 19:03:59 +0200 |
commit | 2307523d322af762ae06648b29ec5a9eb1c73032 (patch) | |
tree | 0966ec49442eaa02c35f281fe407012f997b7b1c /ggml.c | |
parent | 0f648573dde61c510560f68244f70ece7e60d8c1 (diff) |
ggml : add Vulkan backend (#2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'ggml.c')
-rw-r--r-- | ggml.c | 45 |
1 files changed, 42 insertions, 3 deletions
@@ -248,6 +248,8 @@ inline static void * ggml_aligned_malloc(size_t size) { #include "ggml-cuda.h" #elif defined(GGML_USE_CLBLAST) #include "ggml-opencl.h" +#elif defined(GGML_USE_VULKAN) +#include "ggml-vulkan.h" #elif defined(GGML_USE_SYCL) #include "ggml-sycl.h" #endif @@ -2295,6 +2297,8 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { ggml_init_cublas(); #elif defined(GGML_USE_CLBLAST) ggml_cl_init(); +#elif defined(GGML_USE_VULKAN) + ggml_vk_init(); #elif defined(GGML_USE_SYCL) ggml_init_sycl(); #endif @@ -8019,7 +8023,7 @@ static void ggml_compute_forward_mul_f32( const int ith = params->ith; const int nth = params->nth; -#ifdef GGML_USE_CLBLAST +#if defined(GGML_USE_CLBLAST) if (src1->backend == GGML_BACKEND_GPU) { // TODO: OpenCL kernel support full broadcast GGML_ASSERT(ggml_can_repeat_rows(src1, src0)); @@ -14703,6 +14707,18 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm } GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU); GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU); +#elif defined(GGML_USE_VULKAN) + const bool skip_cpu = ggml_vk_compute_forward(params, tensor); +#ifdef GGML_VULKAN_CHECK_RESULTS + if (skip_cpu) { + ggml_vk_check_results_1(params, tensor); + } +#endif + if (skip_cpu) { + return; + } + GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU); + GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU); #endif // GGML_USE_CUBLAS #ifdef GGML_USE_SYCL @@ -17105,6 +17121,17 @@ int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { } } +#ifdef GGML_USE_VULKAN + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_vk_preallocate_buffers_graph(cgraph->nodes[i]); + } + ggml_vk_preallocate_buffers(); + + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1); + } +#endif + const int n_threads = cplan->n_threads; struct ggml_compute_state_shared state_shared = { @@ -17156,6 +17183,10 @@ int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { } } +#ifdef GGML_USE_VULKAN + ggml_vk_graph_cleanup(); +#endif + // performance stats (graph) { int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles; @@ -20290,7 +20321,7 @@ int ggml_cpu_has_wasm_simd(void) { } int ggml_cpu_has_blas(void) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL) return 1; #else return 0; @@ -20313,6 +20344,14 @@ int ggml_cpu_has_clblast(void) { #endif } +int ggml_cpu_has_vulkan(void) { +#if defined(GGML_USE_VULKAN) + return 1; +#else + return 0; +#endif +} + int ggml_cpu_has_sycl(void) { #if defined(GGML_USE_SYCL) return 1; @@ -20322,7 +20361,7 @@ int ggml_cpu_has_sycl(void) { } int ggml_cpu_has_gpublas(void) { - return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_sycl(); + return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_sycl(); } int ggml_cpu_has_sse3(void) { |