summaryrefslogtreecommitdiff
path: root/ggml.c
diff options
context:
space:
mode:
authorslaren <2141330+slaren@users.noreply.github.com>2023-04-29 02:04:18 +0200
committerGitHub <noreply@github.com>2023-04-29 02:04:18 +0200
commit7fc50c051ae8a78e9643fdf172d12e20f2dd9b6c (patch)
treecc017db2f3443a39221ad319ab51df0925012e84 /ggml.c
parentb1ee8f59b4101b46999a0995d9a34506f7285466 (diff)
cuBLAS: use host pinned memory and dequantize while copying (#1207)
* cuBLAS: dequantize simultaneously while copying memory * cuBLAS: use host pinned memory * cuBLAS: improve ggml_compute_forward_mul_mat_f16_f32 with pinned memory * cuBLAS: also pin kv cache * fix rebase
Diffstat (limited to 'ggml.c')
-rw-r--r--ggml.c70
1 files changed, 29 insertions, 41 deletions
diff --git a/ggml.c b/ggml.c
index 4ec637ee..64ecd086 100644
--- a/ggml.c
+++ b/ggml.c
@@ -8033,7 +8033,7 @@ static void ggml_compute_forward_mul_mat_f32(
#if defined(GGML_USE_CUBLAS)
const float alpha = 1.0f;
const float beta = 0.0f;
- const int x_ne = ne01 * ne10;
+ const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
@@ -8235,25 +8235,27 @@ static void ggml_compute_forward_mul_mat_f16_f32(
}
#if defined(GGML_USE_CUBLAS)
- ggml_fp16_t * const wdata = params->wdata;
-
const float alpha = 1.0f;
const float beta = 0.0f;
- const int x_ne = ne01 * ne10;
+ const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size;
- float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
- float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
- float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
+ ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
+ ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
+ float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
#else
float * const wdata = params->wdata;
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
#if defined(GGML_USE_CUBLAS)
+ // copy src0 while converting src1
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
+
// with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02);
{
size_t id = 0;
for (int64_t i01 = 0; i01 < ne11; ++i01) {
@@ -8275,11 +8277,9 @@ static void ggml_compute_forward_mul_mat_f16_f32(
#if defined(GGML_USE_CUBLAS)
const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
-
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// copy data to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
// compute
@@ -8498,39 +8498,19 @@ static void ggml_compute_forward_mul_mat_q_f32(
#if defined(GGML_USE_CUBLAS)
const float alpha = 1.0f;
const float beta = 0.0f;
- const int x_ne = ne01 * ne10;
+ const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size, q_size;
- float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
- float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
- float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
- float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
+ float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
+ float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
+ float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
+ void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
- void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
- if (type == GGML_TYPE_Q4_0) {
- dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
- }
- else if (type == GGML_TYPE_Q4_1) {
- dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
- }
- else if (type == GGML_TYPE_Q4_2) {
- dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
- }
- else if (type == GGML_TYPE_Q5_0) {
- dequantize_row_q_cuda = dequantize_row_q5_0_cuda;
- }
- else if (type == GGML_TYPE_Q5_1) {
- dequantize_row_q_cuda = dequantize_row_q5_1_cuda;
- }
- else if (type == GGML_TYPE_Q8_0) {
- dequantize_row_q_cuda = dequantize_row_q8_0_cuda;
- }
- else {
- GGML_ASSERT(false);
- }
-#elif !defined(GGML_USE_CLBLAST)
+ const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type);
+ GGML_ASSERT(dequantize_row_q_cuda != NULL);
+#else
float * const wdata = params->wdata;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
#endif
@@ -8543,10 +8523,11 @@ static void ggml_compute_forward_mul_mat_q_f32(
#if defined(GGML_USE_CUBLAS)
// copy and dequantize on device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
- dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
+ dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2);
CUDA_CHECK(cudaGetLastError());
+ CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
#elif defined(GGML_USE_CLBLAST)
const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
#else
@@ -8560,11 +8541,13 @@ static void ggml_compute_forward_mul_mat_q_f32(
const float * x = wdata;
#endif
-
#if defined(GGML_USE_CUBLAS)
// copy data to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
+ // wait for dequantization
+ CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
+
// compute
CUBLAS_CHECK(
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
@@ -11588,7 +11571,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
+ cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*MAX(ggml_nelements(node->src1), ggml_nelements(node->src0));
//printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
//printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
//printf("cur = %zu\n", cur);
@@ -11600,6 +11583,11 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
#endif
} else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
cur = 0;
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
+ if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
+ node->n_tasks = 1;
+ }
+#endif
} else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {