diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-02-21 11:39:52 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-02-21 11:39:52 +0200 |
commit | a14679cc30c785e75d38028bae6ec39c6209ddef (patch) | |
tree | 1e119caa6a0d94c0dbecf5bd8cb7df8d05652b8b /ggml.c | |
parent | 6560bed3f066c876682464762cad90f1e28e3f1b (diff) |
IQ4_NL: 4-bit non-linear quants with blocks of 32 (#5590)
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* iq4_nl: Fix after merging with master
* iq4_nl: another fix after merging with master
* Use IQ4_NL instead of Q4_K when using k-quants is not possible
* Fix typo that makes several tests fail
* It was the ggml_vdotq thing missed inside the brackets
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml.c')
-rw-r--r-- | ggml.c | 30 |
1 files changed, 30 insertions, 0 deletions
@@ -690,6 +690,18 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, + [GGML_TYPE_IQ4_NL] = { + .type_name = "iq4_nl", + .blck_size = QK4_NL, + .type_size = sizeof(block_iq4_nl), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq4_nl, + .from_float = quantize_row_iq4_nl, + .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference, + .vec_dot = ggml_vec_dot_iq4_nl_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, + .nrows = 1, + }, [GGML_TYPE_Q8_K] = { .type_name = "q8_K", .blck_size = QK_K, @@ -2291,6 +2303,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break; case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break; case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break; + case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break; case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break; case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break; } @@ -7702,6 +7715,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: { ggml_compute_forward_add_q_f32(params, src0, src1, dst); } break; @@ -7970,6 +7984,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: { ggml_compute_forward_add1_q_f32(params, src0, src1, dst); } break; @@ -8091,6 +8106,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: default: { GGML_ASSERT(false); @@ -10858,6 +10874,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: { ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst); } break; @@ -11039,6 +11056,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: default: { GGML_ASSERT(false); @@ -11237,6 +11255,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: { ggml_compute_forward_get_rows_q(params, src0, src1, dst); } break; @@ -11911,6 +11930,7 @@ static void ggml_compute_forward_alibi( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: case GGML_TYPE_Q8_K: case GGML_TYPE_I8: case GGML_TYPE_I16: @@ -11989,6 +12009,7 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: case GGML_TYPE_Q8_K: case GGML_TYPE_I8: case GGML_TYPE_I16: @@ -19455,6 +19476,15 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); GGML_ASSERT(result == row_size * nrows); } break; + case GGML_TYPE_IQ4_NL: + { + GGML_ASSERT(start % QK4_NL == 0); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); + } break; case GGML_TYPE_F16: { size_t elemsize = sizeof(ggml_fp16_t); |