diff options
author | slaren <slarengh@gmail.com> | 2024-01-12 20:07:38 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-01-12 20:07:38 +0100 |
commit | e7e4df031b9e29d4b55a4e0b0295187f6b213db1 (patch) | |
tree | 93211b7800be3c2c5f9eb1d55f3b7b3acdc56c9b /ggml.c | |
parent | 584d674be622fbf1578694ada6e62eebedbfd377 (diff) |
llama : ggml-backend integration (#4766)
* llama : ggml-backend integration
* ggml-backend : add names to buffers
* fix unmap after loading
* batched-bench : add tensor_split param
* llama : check for null tensor_split
* ggml-backend : increase GGML_MAX_BACKENDS
* improve graph splitting, partial fix for --no-kv-offload
* cuda : add ggml-backend split buffer support
* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)
* ggml : fix null backend dereference (#4807)
* ggml : fix null backend dereference
* ggml : also check ggml_backend_is_cpu
* test-backend-ops : check buffer allocation failures
* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)
* ggml : fix mul_mat_id work size
* llama : rewrite session kv load/set without graphs
* minor
* llama : only initialize used backends, free backends on context free
* llama : abort ctx if cuda backend init fails
* llama : rewrite lora with ggml-backend and compute on CPU
ggml-ci
* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer
* opencl : add ggml-backend buffer type
* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)
* llama : on Metal, by default offload the full model
ggml-ci
* metal : page align the data ptr (#4854)
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cuda : fix split buffer free
* address review comments
* llama-bench : add split-mode parameter
* fix whitespace
* opencl : fix double initialization
* server : add --split-mode parameter
* use async copy and compute to improve multi-gpu performance
ggml-ci
* use async memcpys to copy the graph outputs to the CPU
* fix opencl
* use a host buffer for the cpu compute buffer for faster copies to the gpu
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Diffstat (limited to 'ggml.c')
-rw-r--r-- | ggml.c | 30 |
1 files changed, 26 insertions, 4 deletions
@@ -2354,6 +2354,10 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { } void ggml_free(struct ggml_context * ctx) { + if (ctx == NULL) { + return; + } + // make this function thread safe ggml_critical_section_start(); @@ -4362,6 +4366,23 @@ struct ggml_tensor * ggml_cpy( return ggml_cpy_impl(ctx, a, b); } +struct ggml_tensor * ggml_cast( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_type type) { + bool is_node = false; + + struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne); + ggml_format_name(result, "%s (copy)", a->name); + + result->op = GGML_OP_CPY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = result; + + return result; +} + // ggml_cont static struct ggml_tensor * ggml_cont_impl( @@ -14871,7 +14892,7 @@ size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tenso return i; } -static struct ggml_hash_set ggml_hash_set_new(size_t size) { +struct ggml_hash_set ggml_hash_set_new(size_t size) { size = ggml_hash_size(size); struct ggml_hash_set result; result.size = size; @@ -16620,7 +16641,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { return GGML_EXIT_SUCCESS; } -struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { +struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) { if (n_threads <= 0) { n_threads = GGML_DEFAULT_N_THREADS; } @@ -16682,14 +16703,15 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { } break; case GGML_OP_MUL_MAT_ID: { + cur = 0; const struct ggml_tensor * src0 = node->src[2]; const struct ggml_tensor * src1 = node->src[1]; const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type; if (src1->type != vec_dot_type) { - cur = ggml_row_size(vec_dot_type, ggml_nelements(src1)); + cur += ggml_row_size(vec_dot_type, ggml_nelements(src1)); } const int n_as = ggml_get_op_params_i32(node, 1); - cur = GGML_PAD(cur, sizeof(int64_t)); // align + cur += GGML_PAD(cur, sizeof(int64_t)); // align cur += n_as * sizeof(int64_t); // matrix_row_counts cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows } break; |