summaryrefslogtreecommitdiff
path: root/ggml.h
diff options
context:
space:
mode:
authorslaren <slarengh@gmail.com>2024-01-12 20:07:38 +0100
committerGitHub <noreply@github.com>2024-01-12 20:07:38 +0100
commite7e4df031b9e29d4b55a4e0b0295187f6b213db1 (patch)
tree93211b7800be3c2c5f9eb1d55f3b7b3acdc56c9b /ggml.h
parent584d674be622fbf1578694ada6e62eebedbfd377 (diff)
llama : ggml-backend integration (#4766)
* llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Diffstat (limited to 'ggml.h')
-rw-r--r--ggml.h9
1 files changed, 7 insertions, 2 deletions
diff --git a/ggml.h b/ggml.h
index 4c2ff6c6..b18ba781 100644
--- a/ggml.h
+++ b/ggml.h
@@ -1165,6 +1165,11 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
+ GGML_API struct ggml_tensor * ggml_cast(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_type type);
+
// make contiguous
GGML_API struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
@@ -1842,8 +1847,8 @@ extern "C" {
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
- GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
- GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
+ GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
+ GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data