diff options
author | Georgi Gerganov <ggerganov@gmail.com> | 2023-09-28 19:04:36 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-09-28 19:04:36 +0300 |
commit | ec893798b7a2a803466cc8f063051499ec3d96f7 (patch) | |
tree | 6c0c68de076d3d8493135cf7d958e43eeda04fd8 /ggml.h | |
parent | 45855b3f1c7bdd0320aa632334d0b3e8965c26c4 (diff) |
llama : custom attention mask + parallel decoding + no context swaps (#3228)
* tests : verify that RoPE is "additive"
* llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask)
* ggml : ggml_rope now takes a vector with positions instead of n_past
* metal : add rope_f16 kernel + optimize cpy kernels
* llama : unified KV cache + batch inference API
* llama : add new llama_decode() API that works with llama_batch
* llama : add cell_max heuristic for more efficient kv_cache
* llama : extend llama_kv_cache API
* llama : more robust cell_max heuristic + wip shift
* metal : disable concurrency optimization
* llama : add llama_kv_cache_shift_seq + no more context swaps
* llama : apply K-cache roping for Falcon and Baichuan
* speculative : fix KV cache management
* parallel : example for serving multiple users in parallel
* parallel : disable hot-plug to avoid cache fragmentation
* fixes : speculative KV cache + llama worst-case graph
* llama : extend batch API to select which logits to output
* llama : fix worst case graph build
* ggml-cuda : update rope implementation for parallel decoding (#3254)
* ggml-cuda : update rope implementation for parallel decoding
* better solution for p0 computation
* fix rope
* simpler rope implementation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* make : add parallel to build + fix static functions in llama.cpp
* simple : fix token counting
* parallel : various improvements
* llama : fix cell_max logic + rename functions
* parallel : try smaller batches when the KV cache is fragmented
* parallel : fix sequence termination criteria
* llama : silence errors KV cache errors
* parallel : remove new line from prompt
* parallel : process system prompt once + configurable paramters + llama API
* parallel : remove question with short answers
* parallel : count cache misses
* parallel : print misses on each request
* parallel : minor
* llama : fix n_kv to never become 0
* parallel : rename hot-plug to continuous-batching
* llama : improve llama_batch API + simplify parallel example
* simple : add parallel decoding support
* simple : improve comments + free batch
* ggml-cuda : add rope f16, restore performance with parallel decoding (#3272)
* ggml-cuda : add rope f16, restore performance
* offload KQ_mask with all models
* fix rope shift
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : disable MPI for now
ggml-ci
* train : make KQ_pos memory buffer permanent via dummy scale op
* ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275)
ggml-ci
* parallel : fix bug (extra BOS) + smaller token_prev array
* parallel : fix cases where the input prompts can overflow the batch
* parallel : add disabled experimental batch chunking in powers of two
* llama : llama.h formatting + comments
* simple : add README.md
* llama : fix kv cache heuristic when context is less than 32
* parallel : fix crash when `-n -1`
* llama : simplify returns if/else branches
* metal : use mm kernels for batch size > 2
* examples : utilize new llama_get_logits_ith()
* examples : add example for batched decoding
* examples : do not eval prompt 2 times (close #3348)
* server : clear the KV cache beyond n_past before llama_decode
* server : avoid context swaps by shifting the KV cache
---------
Co-authored-by: slaren <slarengh@gmail.com>
Diffstat (limited to 'ggml.h')
-rw-r--r-- | ggml.h | 45 |
1 files changed, 36 insertions, 9 deletions
@@ -1055,7 +1055,6 @@ extern "C" { size_t nb1, size_t offset); - // a -> b, return view(b) GGML_API struct ggml_tensor * ggml_cpy( struct ggml_context * ctx, @@ -1078,6 +1077,33 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + // make contiguous, with new shape + GGML_API struct ggml_tensor * ggml_cont_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0); + + GGML_API struct ggml_tensor * ggml_cont_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1); + + GGML_API struct ggml_tensor * ggml_cont_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2); + + GGML_API struct ggml_tensor * ggml_cont_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3); + // return view(a), b specifies the new shape // TODO: when we start computing gradient, make a copy instead of view GGML_API struct ggml_tensor * ggml_reshape( @@ -1225,14 +1251,15 @@ extern "C" { struct ggml_tensor * b); // rotary position embedding - // if mode & 1 == 1, skip n_past elements + // if mode & 1 == 1, skip n_past elements (DEPRECATED) // if mode & 2 == 1, GPT-NeoX style // if mode & 4 == 1, ChatGLM style - // TODO: avoid creating a new tensor every time + // + // b is an int32 vector with size a->ne[2], it contains the positions GGML_API struct ggml_tensor * ggml_rope( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx); @@ -1241,7 +1268,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx); @@ -1250,7 +1277,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_custom( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, @@ -1261,7 +1288,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_custom_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, @@ -1272,7 +1299,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_xpos_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, float base, bool down); @@ -1282,7 +1309,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_back( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, |