summaryrefslogtreecommitdiff
path: root/ggml/include/ggml.h
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/include/ggml.h
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/include/ggml.h')
-rw-r--r--ggml/include/ggml.h2453
1 files changed, 2453 insertions, 0 deletions
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
new file mode 100644
index 00000000..5ed8f73d
--- /dev/null
+++ b/ggml/include/ggml.h
@@ -0,0 +1,2453 @@
+#pragma once
+
+//
+// GGML Tensor Library
+//
+// This documentation is still a work in progress.
+// If you wish some specific topics to be covered, feel free to drop a comment:
+//
+// https://github.com/ggerganov/whisper.cpp/issues/40
+//
+// ## Overview
+//
+// This library implements:
+//
+// - a set of tensor operations
+// - automatic differentiation
+// - basic optimization algorithms
+//
+// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
+// but is not limited to, the following:
+//
+// - linear regression
+// - support vector machines
+// - neural networks
+//
+// The library allows the user to define a certain function using the available tensor operations. This function
+// definition is represented internally via a computation graph. Each tensor operation in the function definition
+// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
+// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
+// using one of the available optimization algorithms.
+//
+// For example, here we define the function: f(x) = a*x^2 + b
+//
+// {
+// struct ggml_init_params params = {
+// .mem_size = 16*1024*1024,
+// .mem_buffer = NULL,
+// };
+//
+// // memory allocation happens here
+// struct ggml_context * ctx = ggml_init(params);
+//
+// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
+//
+// ggml_set_param(ctx, x); // x is an input variable
+//
+// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
+// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
+// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
+// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
+//
+// ...
+// }
+//
+// Notice that the function definition above does not involve any actual computation. The computation is performed only
+// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
+//
+// {
+// ...
+//
+// struct ggml_cgraph * gf = ggml_new_graph(ctx);
+// ggml_build_forward_expand(gf, f);
+//
+// // set the input variable and parameter values
+// ggml_set_f32(x, 2.0f);
+// ggml_set_f32(a, 3.0f);
+// ggml_set_f32(b, 4.0f);
+//
+// ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
+//
+// printf("f = %f\n", ggml_get_f32_1d(f, 0));
+//
+// ...
+// }
+//
+// The actual computation is performed in the ggml_graph_compute() function.
+//
+// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
+// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
+// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
+// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
+// actually needed.
+//
+// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
+// differentiation and optimization algorithms.
+//
+// The described approach allows to define the function graph once and then compute its forward or backward graphs
+// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
+// the user can avoid the memory allocation overhead at runtime.
+//
+// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
+// citizens, but in theory the library can be extended to support FP8 and integer data types.
+//
+// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
+// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
+// clear that the library needs to support more complex operations. The way to support these operations is not clear
+// yet, but a few examples are demonstrated in the following operations:
+//
+// - ggml_permute()
+// - ggml_conv_1d_1s()
+// - ggml_conv_1d_2s()
+//
+// For each tensor operator, the library implements a forward and backward computation function. The forward function
+// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
+// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
+// calculus class, or watch the following video:
+//
+// What is Automatic Differentiation?
+// https://www.youtube.com/watch?v=wG_nF1awSSY
+//
+//
+// ## Tensor data (struct ggml_tensor)
+//
+// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
+// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
+// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
+//
+// {
+// struct ggml_tensor * c = ggml_add(ctx, a, b);
+//
+// assert(c->src[0] == a);
+// assert(c->src[1] == b);
+// }
+//
+// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
+// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
+// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
+// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
+// contiguous in memory.
+//
+// The data of the tensor is accessed via the "data" pointer. For example:
+//
+// {
+// const int nx = 2;
+// const int ny = 3;
+//
+// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
+//
+// for (int y = 0; y < ny; y++) {
+// for (int x = 0; x < nx; x++) {
+// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
+// }
+// }
+//
+// ...
+// }
+//
+// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
+//
+// ## The matrix multiplication operator (ggml_mul_mat)
+//
+// TODO
+//
+//
+// ## Multi-threading
+//
+// TODO
+//
+//
+// ## Overview of ggml.c
+//
+// TODO
+//
+//
+// ## SIMD optimizations
+//
+// TODO
+//
+//
+// ## Debugging ggml
+//
+// TODO
+//
+//
+
+#ifdef GGML_SHARED
+# if defined(_WIN32) && !defined(__MINGW32__)
+# ifdef GGML_BUILD
+# define GGML_API __declspec(dllexport)
+# else
+# define GGML_API __declspec(dllimport)
+# endif
+# else
+# define GGML_API __attribute__ ((visibility ("default")))
+# endif
+#else
+# define GGML_API
+#endif
+
+#ifdef GGML_MULTIPLATFORM
+# if defined(_WIN32)
+# define GGML_CALL
+# else
+# define GGML_CALL __attribute__((__ms_abi__))
+# endif
+#else
+# define GGML_CALL
+#endif
+
+// TODO: support for clang
+#ifdef __GNUC__
+# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
+#elif defined(_MSC_VER)
+# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
+#else
+# define GGML_DEPRECATED(func, hint) func
+#endif
+
+#ifndef __GNUC__
+# define GGML_ATTRIBUTE_FORMAT(...)
+#elif defined(__MINGW32__)
+# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
+#else
+# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
+#endif
+
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <stdio.h>
+
+#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
+#define GGML_FILE_VERSION 1
+
+#define GGML_QNT_VERSION 2 // bump this on quantization format changes
+#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
+
+#define GGML_MAX_DIMS 4
+#define GGML_MAX_PARAMS 2048
+#define GGML_MAX_CONTEXTS 64
+#define GGML_MAX_SRC 10
+#ifndef GGML_MAX_NAME
+#define GGML_MAX_NAME 64
+#endif
+#define GGML_MAX_OP_PARAMS 64
+#define GGML_DEFAULT_N_THREADS 4
+#define GGML_DEFAULT_GRAPH_SIZE 2048
+#if UINTPTR_MAX == 0xFFFFFFFF
+ #define GGML_MEM_ALIGN 4
+#else
+ #define GGML_MEM_ALIGN 16
+#endif
+
+#define GGML_EXIT_SUCCESS 0
+#define GGML_EXIT_ABORTED 1
+
+#define GGUF_MAGIC "GGUF"
+
+#define GGUF_VERSION 3
+
+#define GGUF_DEFAULT_ALIGNMENT 32
+
+#define GGML_UNUSED(x) (void)(x)
+
+#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
+
+#define GGML_ASSERT(x) \
+ do { \
+ if (!(x)) { \
+ fflush(stdout); \
+ fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
+ ggml_print_backtrace(); \
+ abort(); \
+ } \
+ } while (0)
+
+#ifndef NDEBUG
+#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
+#elif defined(__GNUC__)
+#define GGML_UNREACHABLE() __builtin_unreachable()
+#elif defined(_MSC_VER)
+#define GGML_UNREACHABLE() __assume(0)
+#else
+#define GGML_UNREACHABLE() ((void) 0)
+#endif
+
+// used to copy the number of elements and stride in bytes of tensors into local variables.
+// main purpose is to reduce code duplication and improve readability.
+//
+// example:
+//
+// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
+// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
+//
+#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
+ const type prefix##0 = (pointer)->array[0]; \
+ GGML_UNUSED(prefix##0);
+#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
+ GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
+ const type prefix##1 = (pointer)->array[1]; \
+ GGML_UNUSED(prefix##1);
+#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
+ GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
+ const type prefix##2 = (pointer)->array[2]; \
+ GGML_UNUSED(prefix##2);
+#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
+ GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
+ const type prefix##3 = (pointer)->array[3]; \
+ GGML_UNUSED(prefix##3);
+
+#define GGML_TENSOR_UNARY_OP_LOCALS \
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
+ GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
+
+#define GGML_TENSOR_BINARY_OP_LOCALS \
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
+ GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
+ GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
+
+#define GGML_TENSOR_BINARY_OP_LOCALS01 \
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
+ GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+ enum ggml_status {
+ GGML_STATUS_ALLOC_FAILED = -2,
+ GGML_STATUS_FAILED = -1,
+ GGML_STATUS_SUCCESS = 0,
+ GGML_STATUS_ABORTED = 1,
+ };
+
+ // get ggml_status name string
+ GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
+
+ // ieee 754-2008 half-precision float16
+ // todo: make this not an integral type
+ typedef uint16_t ggml_fp16_t;
+ GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
+ GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
+ GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
+ GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
+
+ // google brain half-precision bfloat16
+ typedef struct { uint16_t bits; } ggml_bf16_t;
+ GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
+ GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
+ GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
+ GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
+
+ struct ggml_object;
+ struct ggml_context;
+
+ // NOTE: always add types at the end of the enum to keep backward compatibility
+ enum ggml_type {
+ GGML_TYPE_F32 = 0,
+ GGML_TYPE_F16 = 1,
+ GGML_TYPE_Q4_0 = 2,
+ GGML_TYPE_Q4_1 = 3,
+ // GGML_TYPE_Q4_2 = 4, support has been removed
+ // GGML_TYPE_Q4_3 = 5, support has been removed
+ GGML_TYPE_Q5_0 = 6,
+ GGML_TYPE_Q5_1 = 7,
+ GGML_TYPE_Q8_0 = 8,
+ GGML_TYPE_Q8_1 = 9,
+ GGML_TYPE_Q2_K = 10,
+ GGML_TYPE_Q3_K = 11,
+ GGML_TYPE_Q4_K = 12,
+ GGML_TYPE_Q5_K = 13,
+ GGML_TYPE_Q6_K = 14,
+ GGML_TYPE_Q8_K = 15,
+ GGML_TYPE_IQ2_XXS = 16,
+ GGML_TYPE_IQ2_XS = 17,
+ GGML_TYPE_IQ3_XXS = 18,
+ GGML_TYPE_IQ1_S = 19,
+ GGML_TYPE_IQ4_NL = 20,
+ GGML_TYPE_IQ3_S = 21,
+ GGML_TYPE_IQ2_S = 22,
+ GGML_TYPE_IQ4_XS = 23,
+ GGML_TYPE_I8 = 24,
+ GGML_TYPE_I16 = 25,
+ GGML_TYPE_I32 = 26,
+ GGML_TYPE_I64 = 27,
+ GGML_TYPE_F64 = 28,
+ GGML_TYPE_IQ1_M = 29,
+ GGML_TYPE_BF16 = 30,
+ GGML_TYPE_Q4_0_4_4 = 31,
+ GGML_TYPE_Q4_0_4_8 = 32,
+ GGML_TYPE_Q4_0_8_8 = 33,
+ GGML_TYPE_IQ1_BN = 34,
+ GGML_TYPE_IQ2_BN = 35,
+ GGML_TYPE_Q8_K64 = 36,
+ GGML_TYPE_COUNT,
+ };
+
+ // precision
+ enum ggml_prec {
+ GGML_PREC_DEFAULT,
+ GGML_PREC_F32,
+ };
+
+ enum ggml_backend_type {
+ GGML_BACKEND_TYPE_CPU = 0,
+ GGML_BACKEND_TYPE_GPU = 10,
+ GGML_BACKEND_TYPE_GPU_SPLIT = 20,
+ };
+
+ // model file types
+ enum ggml_ftype {
+ GGML_FTYPE_UNKNOWN = -1,
+ GGML_FTYPE_ALL_F32 = 0,
+ GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
+ GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
+ GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ1_BN = 28, // except 1d tensors
+ GGML_FTYPE_MOSTLY_IQ2_BN = 29, // except 1d tensors
+ };
+
+ // available tensor operations:
+ enum ggml_op {
+ GGML_OP_NONE = 0,
+
+ GGML_OP_DUP,
+ GGML_OP_ADD,
+ GGML_OP_ADD1,
+ GGML_OP_ACC,
+ GGML_OP_SUB,
+ GGML_OP_MUL,
+ GGML_OP_DIV,
+ GGML_OP_SQR,
+ GGML_OP_SQRT,
+ GGML_OP_LOG,
+ GGML_OP_SUM,
+ GGML_OP_SUM_ROWS,
+ GGML_OP_MEAN,
+ GGML_OP_ARGMAX,
+ GGML_OP_REPEAT,
+ GGML_OP_REPEAT_BACK,
+ GGML_OP_CONCAT,
+ GGML_OP_SILU_BACK,
+ GGML_OP_NORM, // normalize
+ GGML_OP_RMS_NORM,
+ GGML_OP_RMS_NORM_BACK,
+ GGML_OP_GROUP_NORM,
+
+ GGML_OP_MUL_MAT,
+ GGML_OP_MUL_MAT_ID,
+ GGML_OP_OUT_PROD,
+
+ GGML_OP_SCALE,
+ GGML_OP_SET,
+ GGML_OP_CPY,
+ GGML_OP_CONT,
+ GGML_OP_RESHAPE,
+ GGML_OP_VIEW,
+ GGML_OP_PERMUTE,
+ GGML_OP_TRANSPOSE,
+ GGML_OP_GET_ROWS,
+ GGML_OP_GET_ROWS_BACK,
+ GGML_OP_DIAG,
+ GGML_OP_DIAG_MASK_INF,
+ GGML_OP_DIAG_MASK_ZERO,
+ GGML_OP_SOFT_MAX,
+ GGML_OP_SOFT_MAX_BACK,
+ GGML_OP_ROPE,
+ GGML_OP_ROPE_BACK,
+ GGML_OP_CLAMP,
+ GGML_OP_CONV_TRANSPOSE_1D,
+ GGML_OP_IM2COL,
+ GGML_OP_CONV_TRANSPOSE_2D,
+ GGML_OP_POOL_1D,
+ GGML_OP_POOL_2D,
+ GGML_OP_UPSCALE, // nearest interpolate
+ GGML_OP_PAD,
+ GGML_OP_ARANGE,
+ GGML_OP_TIMESTEP_EMBEDDING,
+ GGML_OP_ARGSORT,
+ GGML_OP_LEAKY_RELU,
+
+ GGML_OP_FLASH_ATTN_EXT,
+ GGML_OP_FLASH_ATTN_BACK,
+ GGML_OP_SSM_CONV,
+ GGML_OP_SSM_SCAN,
+ GGML_OP_WIN_PART,
+ GGML_OP_WIN_UNPART,
+ GGML_OP_GET_REL_POS,
+ GGML_OP_ADD_REL_POS,
+
+ GGML_OP_UNARY,
+
+ GGML_OP_MAP_UNARY,
+ GGML_OP_MAP_BINARY,
+
+ GGML_OP_MAP_CUSTOM1_F32,
+ GGML_OP_MAP_CUSTOM2_F32,
+ GGML_OP_MAP_CUSTOM3_F32,
+
+ GGML_OP_MAP_CUSTOM1,
+ GGML_OP_MAP_CUSTOM2,
+ GGML_OP_MAP_CUSTOM3,
+
+ GGML_OP_CROSS_ENTROPY_LOSS,
+ GGML_OP_CROSS_ENTROPY_LOSS_BACK,
+
+ GGML_OP_COUNT,
+ };
+
+ enum ggml_unary_op {
+ GGML_UNARY_OP_ABS,
+ GGML_UNARY_OP_SGN,
+ GGML_UNARY_OP_NEG,
+ GGML_UNARY_OP_STEP,
+ GGML_UNARY_OP_TANH,
+ GGML_UNARY_OP_ELU,
+ GGML_UNARY_OP_RELU,
+ GGML_UNARY_OP_SIGMOID,
+ GGML_UNARY_OP_GELU,
+ GGML_UNARY_OP_GELU_QUICK,
+ GGML_UNARY_OP_SILU,
+ GGML_UNARY_OP_HARDSWISH,
+ GGML_UNARY_OP_HARDSIGMOID,
+
+ GGML_UNARY_OP_COUNT,
+ };
+
+ enum ggml_object_type {
+ GGML_OBJECT_TYPE_TENSOR,
+ GGML_OBJECT_TYPE_GRAPH,
+ GGML_OBJECT_TYPE_WORK_BUFFER
+ };
+
+ enum ggml_log_level {
+ GGML_LOG_LEVEL_ERROR = 2,
+ GGML_LOG_LEVEL_WARN = 3,
+ GGML_LOG_LEVEL_INFO = 4,
+ GGML_LOG_LEVEL_DEBUG = 5
+ };
+
+ enum ggml_tensor_flag {
+ GGML_TENSOR_FLAG_INPUT = 1,
+ GGML_TENSOR_FLAG_OUTPUT = 2,
+ GGML_TENSOR_FLAG_PARAM = 4,
+ };
+
+ // ggml object
+ struct ggml_object {
+ size_t offs;
+ size_t size;
+
+ struct ggml_object * next;
+
+ enum ggml_object_type type;
+
+ char padding[4];
+ };
+
+ static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
+
+ // n-dimensional tensor
+ struct ggml_tensor {
+ enum ggml_type type;
+
+ GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
+
+ struct ggml_backend_buffer * buffer;
+
+ int64_t ne[GGML_MAX_DIMS]; // number of elements
+ size_t nb[GGML_MAX_DIMS]; // stride in bytes:
+ // nb[0] = ggml_type_size(type)
+ // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
+ // nb[i] = nb[i-1] * ne[i-1]
+
+ // compute data
+ enum ggml_op op;
+
+ // op params - allocated as int32_t for alignment
+ int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
+
+ int32_t flags;
+
+ struct ggml_tensor * grad;
+ struct ggml_tensor * src[GGML_MAX_SRC];
+
+ // source tensor and offset for views
+ struct ggml_tensor * view_src;
+ size_t view_offs;
+
+ void * data;
+
+ char name[GGML_MAX_NAME];
+
+ void * extra; // extra things e.g. for ggml-cuda.cu
+
+ // char padding[4];
+ };
+
+ static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
+
+ // Abort callback
+ // If not NULL, called before ggml computation
+ // If it returns true, the computation is aborted
+ typedef bool (*ggml_abort_callback)(void * data);
+
+ // the compute plan that needs to be prepared for ggml_graph_compute()
+ // since https://github.com/ggerganov/ggml/issues/287
+ struct ggml_cplan {
+ size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
+ uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
+
+ int n_threads;
+
+ // abort ggml_graph_compute when true
+ ggml_abort_callback abort_callback;
+ void * abort_callback_data;
+ };
+
+ enum ggml_cgraph_eval_order {
+ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
+ GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
+ GGML_CGRAPH_EVAL_ORDER_COUNT
+ };
+
+ struct ggml_hash_set {
+ size_t size;
+ struct ggml_tensor ** keys;
+ };
+
+ // computation graph
+ struct ggml_cgraph {
+ int size;
+ int n_nodes;
+ int n_leafs;
+
+ struct ggml_tensor ** nodes;
+ struct ggml_tensor ** grads;
+ struct ggml_tensor ** leafs;
+
+ struct ggml_hash_set visited_hash_table;
+
+ enum ggml_cgraph_eval_order order;
+ };
+
+ // scratch buffer
+ struct ggml_scratch {
+ size_t offs;
+ size_t size;
+ void * data;
+ };
+
+ struct ggml_init_params {
+ // memory pool
+ size_t mem_size; // bytes
+ void * mem_buffer; // if NULL, memory will be allocated internally
+ bool no_alloc; // don't allocate memory for the tensor data
+ };
+
+ // numa strategies
+ enum ggml_numa_strategy {
+ GGML_NUMA_STRATEGY_DISABLED = 0,
+ GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
+ GGML_NUMA_STRATEGY_ISOLATE = 2,
+ GGML_NUMA_STRATEGY_NUMACTL = 3,
+ GGML_NUMA_STRATEGY_MIRROR = 4,
+ GGML_NUMA_STRATEGY_COUNT
+ };
+
+ //
+ // GUID
+ //
+
+ // GUID types
+ typedef uint8_t ggml_guid[16];
+ typedef ggml_guid * ggml_guid_t;
+
+ GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
+
+ // misc
+
+ GGML_API void ggml_time_init(void); // call this once at the beginning of the program
+ GGML_API int64_t ggml_time_ms(void);
+ GGML_API int64_t ggml_time_us(void);
+ GGML_API int64_t ggml_cycles(void);
+ GGML_API int64_t ggml_cycles_per_ms(void);
+
+ GGML_API void ggml_print_backtrace(void);
+
+ // accepts a UTF-8 path, even on Windows
+ GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
+
+ GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
+ GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
+
+ GGML_API void ggml_print_object (const struct ggml_object * obj);
+ GGML_API void ggml_print_objects(const struct ggml_context * ctx);
+
+ GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
+ GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
+ GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
+ GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
+
+ GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
+ GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
+ GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
+
+ GGML_DEPRECATED(
+ GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
+ "use ggml_row_size() instead");
+
+ GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
+ GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
+ GGML_API const char * ggml_op_symbol(enum ggml_op op);
+
+ GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
+ GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
+
+ GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
+
+ GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
+
+ // TODO: temporary until model loading of ggml examples is refactored
+ GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
+
+ GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
+ GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
+ GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
+ GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
+
+ GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
+ GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
+ GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
+ GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
+
+ GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
+ GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
+
+ GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
+
+ // use this to compute the memory overhead of a tensor
+ GGML_API size_t ggml_tensor_overhead(void);
+
+ GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
+
+ // main
+
+ GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
+ GGML_API void ggml_free(struct ggml_context * ctx);
+
+ GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
+
+ GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
+ GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
+ GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
+
+ GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
+ GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
+ GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
+
+ GGML_API struct ggml_tensor * ggml_new_tensor(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int n_dims,
+ const int64_t *ne);
+
+ GGML_API struct ggml_tensor * ggml_new_tensor_1d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int64_t ne0);
+
+ GGML_API struct ggml_tensor * ggml_new_tensor_2d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int64_t ne0,
+ int64_t ne1);
+
+ GGML_API struct ggml_tensor * ggml_new_tensor_3d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2);
+
+ GGML_API struct ggml_tensor * ggml_new_tensor_4d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ int64_t ne3);
+
+ GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
+ GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
+
+ GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
+ GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
+
+ // Context tensor enumeration and lookup
+ GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
+ GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
+ GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
+
+ GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
+ GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
+ GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
+
+ // Converts a flat index into coordinates
+ GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
+
+ GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
+ GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
+
+ GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
+ GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
+
+ GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
+ GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
+
+ GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
+ GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
+
+ GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
+ GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
+
+ GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
+
+ GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
+ GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
+ GGML_ATTRIBUTE_FORMAT(2, 3)
+ GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
+
+ //
+ // operations on tensors with backpropagation
+ //
+
+ GGML_API struct ggml_tensor * ggml_dup(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // in-place, returns view(a)
+ GGML_API struct ggml_tensor * ggml_dup_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_add(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_add_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_add_cast(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ enum ggml_type type);
+
+ GGML_API struct ggml_tensor * ggml_add1(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_add1_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ // dst = a
+ // view(dst, nb1, nb2, nb3, offset) += b
+ // return dst
+ GGML_API struct ggml_tensor * ggml_acc(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset);
+
+ GGML_API struct ggml_tensor * ggml_acc_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset);
+
+ GGML_API struct ggml_tensor * ggml_sub(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_sub_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_mul(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_mul_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_div(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_div_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_sqr(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_sqr_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_sqrt(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_sqrt_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_log(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_log_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // return scalar
+ GGML_API struct ggml_tensor * ggml_sum(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
+ GGML_API struct ggml_tensor * ggml_sum_rows(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // mean along rows
+ GGML_API struct ggml_tensor * ggml_mean(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // argmax along rows
+ GGML_API struct ggml_tensor * ggml_argmax(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // if a is the same shape as b, and a is not parameter, return a
+ // otherwise, return a new tensor: repeat(a) to fit in b
+ GGML_API struct ggml_tensor * ggml_repeat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ // sums repetitions in a into shape of b
+ GGML_API struct ggml_tensor * ggml_repeat_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ // concat a and b along dim
+ // used in stable-diffusion
+ GGML_API struct ggml_tensor * ggml_concat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int dim);
+
+ GGML_API struct ggml_tensor * ggml_abs(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_abs_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_sgn(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_sgn_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_neg(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_neg_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_step(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_step_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_tanh(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_tanh_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_elu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_elu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_relu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_leaky_relu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a, float negative_slope, bool inplace);
+
+ GGML_API struct ggml_tensor * ggml_relu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_sigmoid(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_gelu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_gelu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_gelu_quick(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_silu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_silu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // a - x
+ // b - dy
+ GGML_API struct ggml_tensor * ggml_silu_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ // hardswish(x) = x * relu6(x + 3) / 6
+ GGML_API struct ggml_tensor * ggml_hardswish(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // hardsigmoid(x) = relu6(x + 3) / 6
+ GGML_API struct ggml_tensor * ggml_hardsigmoid(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // normalize along rows
+ GGML_API struct ggml_tensor * ggml_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps);
+
+ GGML_API struct ggml_tensor * ggml_norm_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps);
+
+ GGML_API struct ggml_tensor * ggml_rms_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps);
+
+ GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps);
+
+ // group normalize along ne0*ne1*n_groups
+ // used in stable-diffusion
+ // TODO: eps is hardcoded to 1e-6 for now
+ GGML_API struct ggml_tensor * ggml_group_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_groups);
+
+ GGML_API struct ggml_tensor * ggml_group_norm_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_groups);
+
+ // a - x
+ // b - dy
+ GGML_API struct ggml_tensor * ggml_rms_norm_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ float eps);
+
+ // A: k columns, n rows => [ne03, ne02, n, k]
+ // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
+ // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
+ GGML_API struct ggml_tensor * ggml_mul_mat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ // change the precision of a matrix multiplication
+ // set to GGML_PREC_F32 for higher precision (useful for phi-2)
+ GGML_API void ggml_mul_mat_set_prec(
+ struct ggml_tensor * a,
+ enum ggml_prec prec);
+
+ // indirect matrix multiplication
+ GGML_API struct ggml_tensor * ggml_mul_mat_id(
+ struct ggml_context * ctx,
+ struct ggml_tensor * as,
+ struct ggml_tensor * b,
+ struct ggml_tensor * ids);
+
+ // A: m columns, n rows,
+ // B: p columns, n rows,
+ // result is m columns, p rows
+ GGML_API struct ggml_tensor * ggml_out_prod(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ //
+ // operations on tensors without backpropagation
+ //
+
+ GGML_API struct ggml_tensor * ggml_scale(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float s);
+
+ // in-place, returns view(a)
+ GGML_API struct ggml_tensor * ggml_scale_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float s);
+
+ // b -> view(a,offset,nb1,nb2,3), return modified a
+ GGML_API struct ggml_tensor * ggml_set(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset);
+
+ // b -> view(a,offset,nb1,nb2,3), return view(a)
+ GGML_API struct ggml_tensor * ggml_set_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset);
+
+ GGML_API struct ggml_tensor * ggml_set_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t offset);
+
+ GGML_API struct ggml_tensor * ggml_set_1d_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t offset);
+
+ // b -> view(a,offset,nb1,nb2,3), return modified a
+ GGML_API struct ggml_tensor * ggml_set_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t offset);
+
+ // b -> view(a,offset,nb1,nb2,3), return view(a)
+ GGML_API struct ggml_tensor * ggml_set_2d_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t offset);
+
+ // a -> b, return view(b)
+ GGML_API struct ggml_tensor * ggml_cpy(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_cast(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_type type);
+
+ // make contiguous
+ GGML_API struct ggml_tensor * ggml_cont(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // make contiguous, with new shape
+ GGML_API struct ggml_tensor * ggml_cont_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0);
+
+ GGML_API struct ggml_tensor * ggml_cont_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1);
+
+ GGML_API struct ggml_tensor * ggml_cont_3d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2);
+
+ GGML_API struct ggml_tensor * ggml_cont_4d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ int64_t ne3);
+
+ // return view(a), b specifies the new shape
+ // TODO: when we start computing gradient, make a copy instead of view
+ GGML_API struct ggml_tensor * ggml_reshape(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ // return view(a)
+ // TODO: when we start computing gradient, make a copy instead of view
+ GGML_API struct ggml_tensor * ggml_reshape_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0);
+
+ GGML_API struct ggml_tensor * ggml_reshape_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1);
+
+ // return view(a)
+ // TODO: when we start computing gradient, make a copy instead of view
+ GGML_API struct ggml_tensor * ggml_reshape_3d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2);
+
+ GGML_API struct ggml_tensor * ggml_reshape_4d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ int64_t ne3);
+
+ // offset in bytes
+ GGML_API struct ggml_tensor * ggml_view_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ size_t offset);
+
+ GGML_API struct ggml_tensor * ggml_view_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ size_t nb1, // row stride in bytes
+ size_t offset);
+
+ GGML_API struct ggml_tensor * ggml_view_3d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ size_t nb1, // row stride in bytes
+ size_t nb2, // slice stride in bytes
+ size_t offset);
+
+ GGML_API struct ggml_tensor * ggml_view_4d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ int64_t ne3,
+ size_t nb1, // row stride in bytes
+ size_t nb2, // slice stride in bytes
+ size_t nb3,
+ size_t offset);
+
+ GGML_API struct ggml_tensor * ggml_permute(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int axis0,
+ int axis1,
+ int axis2,
+ int axis3);
+
+ // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
+ GGML_API struct ggml_tensor * ggml_transpose(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // supports 3D: a->ne[2] == b->ne[1]
+ GGML_API struct ggml_tensor * ggml_get_rows(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_get_rows_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c);
+
+ GGML_API struct ggml_tensor * ggml_diag(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // set elements above the diagonal to -INF
+ GGML_API struct ggml_tensor * ggml_diag_mask_inf(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past);
+
+ // in-place, returns view(a)
+ GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past);
+
+ // set elements above the diagonal to 0
+ GGML_API struct ggml_tensor * ggml_diag_mask_zero(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past);
+
+ // in-place, returns view(a)
+ GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past);
+
+ GGML_API struct ggml_tensor * ggml_soft_max(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // in-place, returns view(a)
+ GGML_API struct ggml_tensor * ggml_soft_max_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // fused soft_max(a*scale + mask*(ALiBi slope))
+ // mask is optional
+ // max_bias = 0.0f for no ALiBi
+ GGML_API struct ggml_tensor * ggml_soft_max_ext(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * mask,
+ float scale,
+ float max_bias);
+
+ GGML_API struct ggml_tensor * ggml_soft_max_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ // in-place, returns view(a)
+ GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ // rotary position embedding
+ // if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
+ // if mode & 2 == 1, GPT-NeoX style
+ //
+ // b is an int32 vector with size a->ne[2], it contains the positions
+ // c is freq factors (e.g. phi3-128k), (optional)
+ GGML_API struct ggml_tensor * ggml_rope(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int n_dims,
+ int mode);
+
+ // in-place, returns view(a)
+ GGML_API struct ggml_tensor * ggml_rope_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int n_dims,
+ int mode);
+
+ // custom RoPE
+ GGML_API struct ggml_tensor * ggml_rope_ext(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow);
+
+ // in-place, returns view(a)
+ GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow);
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow),
+ "use ggml_rope_ext instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow),
+ "use ggml_rope_ext_inplace instead");
+
+ // compute correction dims for YaRN RoPE scaling
+ GGML_CALL void ggml_rope_yarn_corr_dims(
+ int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
+
+ // rotary position embedding backward, i.e compute dx from dy
+ // a - dy
+ GGML_API struct ggml_tensor * ggml_rope_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow);
+
+ // clamp
+ // in-place, returns view(a)
+ GGML_API struct ggml_tensor * ggml_clamp(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float min,
+ float max);
+
+ GGML_API struct ggml_tensor * ggml_im2col(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1,
+ bool is_2D,
+ enum ggml_type dst_type);
+
+ GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1);
+
+ GGML_API struct ggml_tensor * ggml_conv_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0, // stride
+ int p0, // padding
+ int d0); // dilation
+
+ // conv_1d with padding = half
+ // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
+ GGML_API struct ggml_tensor* ggml_conv_1d_ph(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s,
+ int d);
+
+ GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int p0,
+ int d0);
+
+ GGML_API struct ggml_tensor * ggml_conv_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1);
+
+
+ // kernel size is a->ne[0] x a->ne[1]
+ // stride is equal to kernel size
+ // padding is zero
+ // example:
+ // a: 16 16 3 768
+ // b: 1024 1024 3 1
+ // res: 64 64 768 1
+ // used in sam
+ GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ // kernel size is a->ne[0] x a->ne[1]
+ // stride is 1
+ // padding is half
+ // example:
+ // a: 3 3 256 256
+ // b: 64 64 256 1
+ // res: 64 64 256 1
+ // used in sam
+ GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int stride);
+
+ enum ggml_op_pool {
+ GGML_OP_POOL_MAX,
+ GGML_OP_POOL_AVG,
+ GGML_OP_POOL_COUNT,
+ };
+
+ GGML_API struct ggml_tensor * ggml_pool_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_op_pool op,
+ int k0, // kernel size
+ int s0, // stride
+ int p0); // padding
+
+ // the result will have 2*p0 padding for the first dimension
+ // and 2*p1 padding for the second dimension
+ GGML_API struct ggml_tensor * ggml_pool_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_op_pool op,
+ int k0,
+ int k1,
+ int s0,
+ int s1,
+ float p0,
+ float p1);
+
+ // nearest interpolate
+ // multiplies ne0 and ne1 by scale factor
+ // used in stable-diffusion
+ GGML_API struct ggml_tensor * ggml_upscale(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int scale_factor);
+
+ // nearest interpolate
+ // nearest interpolate to specified dimensions
+ // used in tortoise.cpp
+ GGML_API struct ggml_tensor * ggml_upscale_ext(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3);
+
+ // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
+ GGML_API struct ggml_tensor * ggml_pad(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int p0,
+ int p1,
+ int p2,
+ int p3);
+
+ // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
+ // timesteps: [N,]
+ // return: [N, dim]
+ GGML_API struct ggml_tensor * ggml_timestep_embedding(
+ struct ggml_context * ctx,
+ struct ggml_tensor * timesteps,
+ int dim,
+ int max_period);
+
+ // sort rows
+ enum ggml_sort_order {
+ GGML_SORT_ORDER_ASC,
+ GGML_SORT_ORDER_DESC,
+ };
+
+ GGML_API struct ggml_tensor * ggml_argsort(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_sort_order order);
+
+ GGML_API struct ggml_tensor * ggml_arange(
+ struct ggml_context * ctx,
+ float start,
+ float stop,
+ float step);
+
+ // top k elements per row
+ GGML_API struct ggml_tensor * ggml_top_k(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int k);
+
+#define GGML_KQ_MASK_PAD 32
+
+ // q: [n_embd, n_batch, n_head, 1]
+ // k: [n_embd, n_kv, n_head_kv, 1]
+ // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
+ // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
+ // res: [n_embd, n_head, n_batch, 1] !! permuted !!
+ GGML_API struct ggml_tensor * ggml_flash_attn_ext(
+ struct ggml_context * ctx,
+ struct ggml_tensor * q,
+ struct ggml_tensor * k,
+ struct ggml_tensor * v,
+ struct ggml_tensor * mask,
+ float scale,
+ float max_bias);
+
+ GGML_API void ggml_flash_attn_ext_set_prec(
+ struct ggml_tensor * a,
+ enum ggml_prec prec);
+
+ // TODO: needs to be adapted to ggml_flash_attn_ext
+ GGML_API struct ggml_tensor * ggml_flash_attn_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * q,
+ struct ggml_tensor * k,
+ struct ggml_tensor * v,
+ struct ggml_tensor * d,
+ bool masked);
+
+ GGML_API struct ggml_tensor * ggml_ssm_conv(
+ struct ggml_context * ctx,
+ struct ggml_tensor * s,
+ struct ggml_tensor * x,
+ struct ggml_tensor * c,
+ struct ggml_tensor * sq);
+
+ GGML_API struct ggml_tensor * ggml_ssm_scan(
+ struct ggml_context * ctx,
+ struct ggml_tensor * s,
+ struct ggml_tensor * x,
+ struct ggml_tensor * dt,
+ struct ggml_tensor * A,
+ struct ggml_tensor * B,
+ struct ggml_tensor * C,
+ struct ggml_tensor * sq);
+
+ // partition into non-overlapping windows with padding if needed
+ // example:
+ // a: 768 64 64 1
+ // w: 14
+ // res: 768 14 14 25
+ // used in sam
+ GGML_API struct ggml_tensor * ggml_win_part(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int w);
+
+ // reverse of ggml_win_part
+ // used in sam
+ GGML_API struct ggml_tensor * ggml_win_unpart(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int w0,
+ int h0,
+ int w);
+
+ GGML_API struct ggml_tensor * ggml_unary(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_unary_op op);
+
+ GGML_API struct ggml_tensor * ggml_unary_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_unary_op op);
+
+ // used in sam
+ GGML_API struct ggml_tensor * ggml_get_rel_pos(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int qh,
+ int kh);
+
+ // used in sam
+ GGML_API struct ggml_tensor * ggml_add_rel_pos(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * pw,
+ struct ggml_tensor * ph);
+
+ GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * pw,
+ struct ggml_tensor * ph);
+
+ // custom operators
+
+ typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
+ typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
+
+ typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
+ typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
+ typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ ggml_unary_op_f32_t fun),
+ "use ggml_map_custom1 instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ ggml_unary_op_f32_t fun),
+ "use ggml_map_custom1_inplace instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ ggml_binary_op_f32_t fun),
+ "use ggml_map_custom2 instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ ggml_binary_op_f32_t fun),
+ "use ggml_map_custom2_inplace instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ ggml_custom1_op_f32_t fun),
+ "use ggml_map_custom1 instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ ggml_custom1_op_f32_t fun),
+ "use ggml_map_custom1_inplace instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ ggml_custom2_op_f32_t fun),
+ "use ggml_map_custom2 instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ ggml_custom2_op_f32_t fun),
+ "use ggml_map_custom2_inplace instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ ggml_custom3_op_f32_t fun),
+ "use ggml_map_custom3 instead");
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ ggml_custom3_op_f32_t fun),
+ "use ggml_map_custom3_inplace instead");
+
+ // custom operators v2
+
+ typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
+ typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
+ typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
+
+ #define GGML_N_TASKS_MAX -1
+
+ GGML_API struct ggml_tensor * ggml_map_custom1(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom2(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom3(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ // loss function
+
+ GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+ GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c);
+
+ //
+ // automatic differentiation
+ //
+
+ GGML_API void ggml_set_param(
+ struct ggml_context * ctx,
+ struct ggml_tensor * tensor);
+
+
+ GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
+ GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
+
+ // graph allocation in a context
+ GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
+ GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
+ GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
+ GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
+ GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
+ GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
+ GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
+
+ GGML_API size_t ggml_graph_overhead(void);
+ GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
+
+ // ggml_graph_plan() has to be called before ggml_graph_compute()
+ // when plan.work_size > 0, caller must allocate memory for plan.work_data
+ GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
+ GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
+ // same as ggml_graph_compute() but the work data is allocated as a part of the context
+ // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
+ GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
+
+ GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
+
+ GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
+ GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
+
+ // print info and performance information for the graph
+ GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
+
+ // dump the graph into a file using the dot format
+ GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
+
+ // build gradient checkpointing backward graph gb for gf using provided checkpoints
+ // gb_tmp will contain original backward graph with rewritten backward process nodes,
+ // but without the second forward pass nodes.
+ GGML_API void ggml_build_backward_gradient_checkpointing(
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb,
+ struct ggml_cgraph * gb_tmp,
+ struct ggml_tensor * * checkpoints,
+ int n_checkpoints);
+ //
+ // optimization
+ //
+
+ // optimization methods
+ enum ggml_opt_type {
+ GGML_OPT_TYPE_ADAM,
+ GGML_OPT_TYPE_LBFGS,
+ };
+
+ // linesearch methods
+ enum ggml_linesearch {
+ GGML_LINESEARCH_DEFAULT = 1,
+
+ GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
+ GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
+ GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
+ };
+
+ // optimization return values
+ enum ggml_opt_result {
+ GGML_OPT_RESULT_OK = 0,
+ GGML_OPT_RESULT_DID_NOT_CONVERGE,
+ GGML_OPT_RESULT_NO_CONTEXT,
+ GGML_OPT_RESULT_INVALID_WOLFE,
+ GGML_OPT_RESULT_FAIL,
+ GGML_OPT_RESULT_CANCEL,
+
+ GGML_LINESEARCH_FAIL = -128,
+ GGML_LINESEARCH_MINIMUM_STEP,
+ GGML_LINESEARCH_MAXIMUM_STEP,
+ GGML_LINESEARCH_MAXIMUM_ITERATIONS,
+ GGML_LINESEARCH_INVALID_PARAMETERS,
+ };
+
+ typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
+ typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
+
+ // optimization parameters
+ //
+ // see ggml.c (ggml_opt_default_params) for default values
+ //
+ struct ggml_opt_params {
+ enum ggml_opt_type type;
+
+ size_t graph_size;
+
+ int n_threads;
+
+ // delta-based convergence test
+ //
+ // if past == 0 - disabled
+ // if past > 0:
+ // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
+ //
+ int past;
+ float delta;
+
+ // maximum number of iterations without improvement
+ //
+ // if 0 - disabled
+ // if > 0:
+ // assume convergence if no cost improvement in this number of iterations
+ //
+ int max_no_improvement;
+
+ bool print_forward_graph;
+ bool print_backward_graph;
+
+ int n_gradient_accumulation;
+
+ // ADAM parameters
+ struct {
+ int n_iter;
+
+ float sched; // schedule multiplier (fixed, decay or warmup)
+ float decay; // weight decay for AdamW, use 0.0f to disable
+ int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
+ float alpha; // learning rate
+ float beta1;
+ float beta2;
+ float eps; // epsilon for numerical stability
+ float eps_f; // epsilon for convergence test
+ float eps_g; // epsilon for convergence test
+ float gclip; // gradient clipping
+ } adam;
+
+ // LBFGS parameters
+ struct {
+ int m; // number of corrections to approximate the inv. Hessian
+ int n_iter;
+ int max_linesearch;
+
+ float eps; // convergence tolerance
+ float ftol; // line search tolerance
+ float wolfe;
+ float min_step;
+ float max_step;
+
+ enum ggml_linesearch linesearch;
+ } lbfgs;
+ };
+
+ struct ggml_opt_context {
+ struct ggml_context * ctx;
+ struct ggml_opt_params params;
+
+ int iter;
+ int64_t nx; // number of parameter elements
+
+ bool just_initialized;
+
+ float loss_before;
+ float loss_after;
+
+ struct {
+ struct ggml_tensor * g; // current gradient
+ struct ggml_tensor * m; // first moment
+ struct ggml_tensor * v; // second moment
+ struct ggml_tensor * pf; // past function values
+ float fx_best;
+ float fx_prev;
+ int n_no_improvement;
+ } adam;
+
+ struct {
+ struct ggml_tensor * x; // current parameters
+ struct ggml_tensor * xp; // previous parameters
+ struct ggml_tensor * g; // current gradient
+ struct ggml_tensor * gp; // previous gradient
+ struct ggml_tensor * d; // search direction
+ struct ggml_tensor * pf; // past function values
+ struct ggml_tensor * lmal; // the L-BFGS memory alpha
+ struct ggml_tensor * lmys; // the L-BFGS memory ys
+ struct ggml_tensor * lms; // the L-BFGS memory s
+ struct ggml_tensor * lmy; // the L-BFGS memory y
+ float fx_best;
+ float step;
+ int j;
+ int k;
+ int end;
+ int n_no_improvement;
+ } lbfgs;
+ };
+
+ GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
+
+ // optimize the function defined by the tensor f
+ GGML_API enum ggml_opt_result ggml_opt(
+ struct ggml_context * ctx,
+ struct ggml_opt_params params,
+ struct ggml_tensor * f);
+
+ // initialize optimizer context
+ GGML_API void ggml_opt_init(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_opt_params params,
+ int64_t nx);
+
+ // continue optimizing the function defined by the tensor f
+ GGML_API enum ggml_opt_result ggml_opt_resume(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_tensor * f);
+
+ // continue optimizing the function defined by the tensor f
+ GGML_API enum ggml_opt_result ggml_opt_resume_g(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_tensor * f,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb,
+ ggml_opt_callback callback,
+ void * callback_data);
+
+ //
+ // tensor flags
+ //
+ GGML_API void ggml_set_input(struct ggml_tensor * tensor);
+ GGML_API void ggml_set_output(struct ggml_tensor * tensor);
+
+ //
+ // quantization
+ //
+
+ // - ggml_quantize_init can be called multiple times with the same type
+ // it will only initialize the quantization tables for the first call or after ggml_quantize_free
+ // automatically called by ggml_quantize_chunk for convenience
+ //
+ // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
+ // call this at the end of the program to avoid memory leaks
+ //
+ // note: these are thread-safe
+ //
+ GGML_API void ggml_quantize_init(enum ggml_type type);
+ GGML_API void ggml_quantize_free(void);
+
+ // some quantization type cannot be used without an importance matrix
+ GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
+
+ // calls ggml_quantize_init internally (i.e. can allocate memory)
+ GGML_API size_t ggml_quantize_chunk(
+ enum ggml_type type,
+ const float * src,
+ void * dst,
+ int64_t start,
+ int64_t nrows,
+ int64_t n_per_row,
+ const float * imatrix);
+
+ //
+ // gguf
+ //
+
+ enum gguf_type {
+ GGUF_TYPE_UINT8 = 0,
+ GGUF_TYPE_INT8 = 1,
+ GGUF_TYPE_UINT16 = 2,
+ GGUF_TYPE_INT16 = 3,
+ GGUF_TYPE_UINT32 = 4,
+ GGUF_TYPE_INT32 = 5,
+ GGUF_TYPE_FLOAT32 = 6,
+ GGUF_TYPE_BOOL = 7,
+ GGUF_TYPE_STRING = 8,
+ GGUF_TYPE_ARRAY = 9,
+ GGUF_TYPE_UINT64 = 10,
+ GGUF_TYPE_INT64 = 11,
+ GGUF_TYPE_FLOAT64 = 12,
+ GGUF_TYPE_COUNT, // marks the end of the enum
+ };
+
+ struct gguf_context;
+
+ struct gguf_init_params {
+ bool no_alloc;
+
+ // if not NULL, create a ggml_context and allocate the tensor data in it
+ struct ggml_context ** ctx;
+ };
+
+ GGML_API struct gguf_context * gguf_init_empty(void);
+ GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
+ //GGML_API struct gguf_context * gguf_init_from_buffer(..);
+
+ GGML_API void gguf_free(struct gguf_context * ctx);
+
+ GGML_API const char * gguf_type_name(enum gguf_type type);
+
+ GGML_API int gguf_get_version (const struct gguf_context * ctx);
+ GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
+ GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
+ GGML_API void * gguf_get_data (const struct gguf_context * ctx);
+
+ GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
+ GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
+ GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
+
+ GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
+ GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
+
+ // will abort if the wrong type is used for the key
+ GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
+ GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
+ GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
+ GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
+ GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
+ GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
+ GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
+ GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
+ GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
+ GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
+ GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
+ GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
+ GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
+ GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
+ GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
+ GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
+
+ GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
+ GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
+ GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
+ GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
+ GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
+
+ // removes key if it exists
+ GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
+
+ // overrides existing values or adds a new one
+ GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
+ GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
+ GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
+ GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
+ GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
+ GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
+ GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
+ GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
+ GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
+ GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
+ GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
+ GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
+ GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
+ GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
+
+ // set or add KV pairs from another context
+ GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
+
+ // manage tensor info
+ GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
+ GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
+ GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
+
+ // writing gguf files can be done in 2 ways:
+ //
+ // - write the entire gguf_context to a binary file in a single pass:
+ //
+ // gguf_write_to_file(ctx, fname);
+ //
+ // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
+ //
+ // FILE * f = fopen(fname, "wb");
+ // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
+ // fwrite(f, ...);
+ // void * data = gguf_meta_get_meta_data(ctx);
+ // fseek(f, 0, SEEK_SET);
+ // fwrite(f, data, gguf_get_meta_size(ctx));
+ // free(data);
+ // fclose(f);
+ //
+
+ // write the entire context to a binary file
+ GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
+
+ // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
+ GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
+ GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
+
+ //
+ // system info
+ //
+
+ GGML_API int ggml_cpu_has_avx (void);
+ GGML_API int ggml_cpu_has_avx_vnni (void);
+ GGML_API int ggml_cpu_has_avx2 (void);
+ GGML_API int ggml_cpu_has_avx512 (void);
+ GGML_API int ggml_cpu_has_avx512_vbmi(void);
+ GGML_API int ggml_cpu_has_avx512_vnni(void);
+ GGML_API int ggml_cpu_has_avx512_bf16(void);
+ GGML_API int ggml_cpu_has_fma (void);
+ GGML_API int ggml_cpu_has_neon (void);
+ GGML_API int ggml_cpu_has_sve (void);
+ GGML_API int ggml_cpu_has_arm_fma (void);
+ GGML_API int ggml_cpu_has_metal (void);
+ GGML_API int ggml_cpu_has_f16c (void);
+ GGML_API int ggml_cpu_has_fp16_va (void);
+ GGML_API int ggml_cpu_has_wasm_simd (void);
+ GGML_API int ggml_cpu_has_blas (void);
+ GGML_API int ggml_cpu_has_cuda (void);
+ GGML_API int ggml_cpu_has_vulkan (void);
+ GGML_API int ggml_cpu_has_kompute (void);
+ GGML_API int ggml_cpu_has_gpublas (void);
+ GGML_API int ggml_cpu_has_sse3 (void);
+ GGML_API int ggml_cpu_has_ssse3 (void);
+ GGML_API int ggml_cpu_has_sycl (void);
+ GGML_API int ggml_cpu_has_rpc (void);
+ GGML_API int ggml_cpu_has_vsx (void);
+ GGML_API int ggml_cpu_has_matmul_int8(void);
+ GGML_API int ggml_cpu_has_cann (void);
+ GGML_API int ggml_cpu_has_llamafile (void);
+
+ //
+ // Internal types and functions exposed for tests and benchmarks
+ //
+
+#ifdef __cplusplus
+// restrict not standard in C++
+#define GGML_RESTRICT
+#else
+#define GGML_RESTRICT restrict
+#endif
+ typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
+ typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
+ typedef void (*ggml_from_float_to_mat_t)
+ (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
+ typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
+ const void * GGML_RESTRICT y, size_t by, int nrc);
+ typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
+ const void * GGML_RESTRICT y, int nr, int nc);
+ typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
+ const void * GGML_RESTRICT y, int nr, int nc);
+
+ typedef struct {
+ const char * type_name;
+ int64_t blck_size;
+ int64_t blck_size_interleave; // interleave elements in blocks
+ size_t type_size;
+ bool is_quantized;
+ ggml_to_float_t to_float;
+ ggml_from_float_t from_float;
+ ggml_from_float_t from_float_ref;
+ ggml_from_float_to_mat_t from_float_to_mat;
+ ggml_vec_dot_t vec_dot;
+ enum ggml_type vec_dot_type;
+ int64_t nrows; // number of rows to process simultaneously
+ int64_t ncols; // number of columns to process simultaneously
+ ggml_gemv_t gemv;
+ ggml_gemm_t gemm;
+ } ggml_type_traits_t;
+
+ GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
+
+#ifdef __cplusplus
+}
+#endif