diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2024-12-02 07:25:39 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-12-02 07:25:39 +0100 |
commit | 6d0462d4a39085a9f9da04e0a5fc7cc9d4578818 (patch) | |
tree | b7fd71bda09bb8e2315feff8b6128ad0b7cbefc7 /ggml/include/ggml.h | |
parent | 8ad84b9fab9570c36220cb791f9a67a4d2c7fd2f (diff) |
IQ4_NL_X4 (#118)
* Adding iq4_nl_x4
Looks very promising - I get PP-512(LLaMA-3.1-8B) = 230 t/s
on the Ryzen-7950X! This is faster than any other quant and
~40% faster than iq4_nl.
* iq4_nl_x4: getting amazing
This Zen4 variant gets us to PP-512(LLaMA-3.1-8B) = 263 t/s!
* iq4_nl_x4: AVX2
Here we gain only 25% compared to iq4_nl
* iq4_nl_x4: NEON
On M2-Max we get PP-512(LLaMA-3.1-8B) = 109.7 t/s, up from
82.4 t/s for iq4_nl.
* iq4_nl_x4: minor NEON improvement and cleanup
This gets us to 110.3 t/s. In comparison,
IQ4_NL_4_4 in mainline llama.cpp achieves 92.3 t/s.
* iq4_nl_x4: NEON specialization for matrix x vector
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/include/ggml.h')
-rw-r--r-- | ggml/include/ggml.h | 4 |
1 files changed, 4 insertions, 0 deletions
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 8980285f..dabb2264 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -406,6 +406,8 @@ extern "C" { GGML_TYPE_IQ4_KS = 144, GGML_TYPE_IQ2_KS = 145, GGML_TYPE_IQ4_KSS = 146, + + GGML_TYPE_IQ4_NL_X4 = 220, GGML_TYPE_COUNT, }; @@ -464,6 +466,8 @@ extern "C" { GGML_FTYPE_MOSTLY_IQ4_KS = 137, // except 1d tensors GGML_FTYPE_MOSTLY_IQ2_KS = 138, // except 1d tensors GGML_FTYPE_MOSTLY_IQ4_KSS = 139, // except 1d tensors + // + GGML_FTYPE_MOSTLY_IQ4_NL_X4 = 219, // except 1d tensors }; // available tensor operations: |