summaryrefslogtreecommitdiff
path: root/ggml/include/ggml.h
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-03 12:59:22 +0100
committerGitHub <noreply@github.com>2024-12-03 12:59:22 +0100
commitc5bf589367cd609f4c0ff73a6534bbde7902abe8 (patch)
treefa17f82c717d535222c1843fc9fca2d66f4d6ea7 /ggml/include/ggml.h
parentccec00939a30aa7762a232ac4dcadba985ef9ee4 (diff)
Q5_0_R4 (#121)
* Adding q5_0_r4 We get PP-512(LLaMA-3.1-8B) = 256.7 t/s on a Ryzen-7950X. We even get TG-128 improvement to 11.7 t/s from 11.1 t/s. * q5_0_r4: NEON We get PP-512(LLaMA-3.1-8B) = 99.6 t/s on M2-Max, up from 71.0 t/s for Q5_0. The difference to mainline llama.cpp is no longer funny: they get 26.5 t/s for Q5_0. For TG, we are nor able to fully saturate memory bandwidth and arrive at 22.1 t/s @ 8 threads. Mainline llama.cpp gets 20.6 t/s for Q5_0. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/include/ggml.h')
-rw-r--r--ggml/include/ggml.h4
1 files changed, 4 insertions, 0 deletions
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
index 2358fb76..99c39b9c 100644
--- a/ggml/include/ggml.h
+++ b/ggml/include/ggml.h
@@ -408,8 +408,10 @@ extern "C" {
GGML_TYPE_IQ4_KSS = 146,
GGML_TYPE_Q4_0_R4 = 202,
+ GGML_TYPE_Q5_0_R4 = 206,
GGML_TYPE_Q8_0_R4 = 208,
GGML_TYPE_IQ4_NL_X4 = 220,
+ GGML_TYPE_Q6_0_R4 = 233,
GGML_TYPE_COUNT,
};
@@ -471,7 +473,9 @@ extern "C" {
//
GGML_FTYPE_MOSTLY_Q4_0_R4 = 202, // except 1d tensors
GGML_FTYPE_MOSTLY_Q8_0_R4 = 207, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q5_0_R4 = 208, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ4_NL_X4 = 219, // except 1d tensors
+ GGML_FTYPE_MOSTLY_Q6_0_R4 = 227, // except 1d tensors
};
// available tensor operations: