summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-backend.c
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/src/ggml-backend.c
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml-backend.c')
-rw-r--r--ggml/src/ggml-backend.c2234
1 files changed, 2234 insertions, 0 deletions
diff --git a/ggml/src/ggml-backend.c b/ggml/src/ggml-backend.c
new file mode 100644
index 00000000..d39cfed8
--- /dev/null
+++ b/ggml/src/ggml-backend.c
@@ -0,0 +1,2234 @@
+#include "ggml-backend-impl.h"
+#include "ggml-alloc.h"
+#include "ggml-impl.h"
+
+#include <assert.h>
+#include <limits.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+// backend buffer type
+
+const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
+ return buft->iface.get_name(buft);
+}
+
+GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ return buft->iface.alloc_buffer(buft, size);
+}
+
+size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
+ return buft->iface.get_alignment(buft);
+}
+
+size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
+ // get_max_size is optional, defaults to SIZE_MAX
+ if (buft->iface.get_max_size) {
+ return buft->iface.get_max_size(buft);
+ }
+ return SIZE_MAX;
+}
+
+GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
+ // get_alloc_size is optional, defaults to ggml_nbytes
+ if (buft->iface.get_alloc_size) {
+ size_t size = buft->iface.get_alloc_size(buft, tensor);
+ assert(size >= ggml_nbytes(tensor));
+ return size;
+ }
+ return ggml_nbytes(tensor);
+}
+
+bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
+ if (buft->iface.is_host) {
+ return buft->iface.is_host(buft);
+ }
+ return false;
+}
+
+// backend buffer
+
+GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
+ ggml_backend_buffer_type_t buft,
+ struct ggml_backend_buffer_i iface,
+ ggml_backend_buffer_context_t context,
+ size_t size) {
+ ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
+
+ (*buffer) = (struct ggml_backend_buffer) {
+ /* .interface = */ iface,
+ /* .buft = */ buft,
+ /* .context = */ context,
+ /* .size = */ size,
+ /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
+ };
+
+ return buffer;
+}
+
+const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
+ return buffer->iface.get_name(buffer);
+}
+
+void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
+ if (buffer == NULL) {
+ return;
+ }
+
+ if (buffer->iface.free_buffer != NULL) {
+ buffer->iface.free_buffer(buffer);
+ }
+ free(buffer);
+}
+
+size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
+ return buffer->size;
+}
+
+void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
+ void * base = buffer->iface.get_base(buffer);
+
+ GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
+
+ return base;
+}
+
+GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
+ // init_tensor is optional
+ if (buffer->iface.init_tensor) {
+ buffer->iface.init_tensor(buffer, tensor);
+ }
+}
+
+size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
+ return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
+}
+
+size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
+ return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
+}
+
+size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
+ return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
+}
+
+void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ buffer->iface.clear(buffer, value);
+}
+
+bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
+ return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
+}
+
+void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
+ buffer->usage = usage;
+
+ // FIXME: add a generic callback to the buffer interface
+ if (ggml_backend_buffer_is_multi_buffer(buffer)) {
+ ggml_backend_multi_buffer_set_usage(buffer, usage);
+ }
+}
+
+enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
+ return buffer->usage;
+}
+
+ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
+ return buffer->buft;
+}
+
+void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
+ if (buffer->iface.reset) {
+ buffer->iface.reset(buffer);
+ }
+}
+
+bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
+ ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
+ if (dst_buf->iface.cpy_tensor) {
+ return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
+ }
+ return false;
+}
+
+// backend
+
+ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
+ if (backend == NULL) {
+ return NULL;
+ }
+ return backend->guid;
+}
+
+const char * ggml_backend_name(ggml_backend_t backend) {
+ if (backend == NULL) {
+ return "NULL";
+ }
+ return backend->iface.get_name(backend);
+}
+
+void ggml_backend_free(ggml_backend_t backend) {
+ if (backend == NULL) {
+ return;
+ }
+
+ backend->iface.free(backend);
+}
+
+ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
+ return backend->iface.get_default_buffer_type(backend);
+}
+
+ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
+ return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
+}
+
+size_t ggml_backend_get_alignment(ggml_backend_t backend) {
+ return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
+}
+
+size_t ggml_backend_get_max_size(ggml_backend_t backend) {
+ return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
+}
+
+void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+ GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
+
+ if (backend->iface.set_tensor_async == NULL) {
+ ggml_backend_tensor_set(tensor, data, offset, size);
+ } else {
+ backend->iface.set_tensor_async(backend, tensor, data, offset, size);
+ }
+}
+
+void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+ GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
+
+ if (backend->iface.get_tensor_async == NULL) {
+ ggml_backend_tensor_get(tensor, data, offset, size);
+ } else {
+ backend->iface.get_tensor_async(backend, tensor, data, offset, size);
+ }
+}
+
+GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
+
+ GGML_ASSERT(buf != NULL && "tensor buffer not set");
+ GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+ GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
+
+ if (!size) {
+ return;
+ }
+
+ buf->iface.set_tensor(buf, tensor, data, offset, size);
+}
+
+GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
+
+ GGML_ASSERT(buf != NULL && "tensor buffer not set");
+ GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+ GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
+
+ if (!size) {
+ return;
+ }
+
+ buf->iface.get_tensor(buf, tensor, data, offset, size);
+}
+
+void ggml_backend_synchronize(ggml_backend_t backend) {
+ if (backend->iface.synchronize == NULL) {
+ return;
+ }
+
+ backend->iface.synchronize(backend);
+}
+
+ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ GGML_ASSERT(backend->iface.graph_plan_create != NULL);
+
+ return backend->iface.graph_plan_create(backend, cgraph);
+}
+
+void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+ GGML_ASSERT(backend->iface.graph_plan_free != NULL);
+
+ backend->iface.graph_plan_free(backend, plan);
+}
+
+enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+ GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
+
+ return backend->iface.graph_plan_compute(backend, plan);
+}
+
+enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
+ ggml_backend_synchronize(backend);
+ return err;
+}
+
+enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ return backend->iface.graph_compute(backend, cgraph);
+}
+
+bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ return backend->iface.supports_op(backend, op);
+}
+
+bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+ return backend->iface.supports_buft(backend, buft);
+}
+
+bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ if (backend->iface.offload_op != NULL) {
+ return backend->iface.offload_op(backend, op);
+ }
+ return false;
+}
+
+// backend copy
+
+static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
+ if (a->type != b->type) {
+ return false;
+ }
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ if (a->ne[i] != b->ne[i]) {
+ return false;
+ }
+ if (a->nb[i] != b->nb[i]) {
+ return false;
+ }
+ }
+ return true;
+}
+
+void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
+ GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
+
+ if (src == dst) {
+ return;
+ }
+
+ if (ggml_backend_buffer_is_host(src->buffer)) {
+ ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
+ } else if (ggml_backend_buffer_is_host(dst->buffer)) {
+ ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
+ } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
+#ifndef NDEBUG
+ fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
+#endif
+ size_t nbytes = ggml_nbytes(src);
+ void * data = malloc(nbytes);
+ ggml_backend_tensor_get(src, data, 0, nbytes);
+ ggml_backend_tensor_set(dst, data, 0, nbytes);
+ free(data);
+ }
+}
+
+void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
+ GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
+
+ if (src == dst) {
+ return;
+ }
+
+ if (backend_dst->iface.cpy_tensor_async != NULL) {
+ if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
+ return;
+ }
+ }
+
+ // an async copy would normally happen after all the queued operations on both backends are completed
+ // sync src, set_async dst
+ if (ggml_backend_buffer_is_host(src->buffer)) {
+ ggml_backend_synchronize(backend_src);
+ ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
+ } else {
+ ggml_backend_synchronize(backend_src);
+ ggml_backend_tensor_copy(src, dst);
+ ggml_backend_synchronize(backend_dst);
+ }
+}
+
+// events
+
+ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
+ if (backend->iface.event_new == NULL) {
+ return NULL;
+ }
+ return backend->iface.event_new(backend);
+}
+
+void ggml_backend_event_free(ggml_backend_event_t event) {
+ if (event == NULL) {
+ return;
+ }
+ event->backend->iface.event_free(event);
+}
+
+void ggml_backend_event_record(ggml_backend_event_t event) {
+ GGML_ASSERT(event->backend->iface.event_record != NULL);
+
+ event->backend->iface.event_record(event);
+}
+
+void ggml_backend_event_synchronize(ggml_backend_event_t event) {
+ GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
+
+ event->backend->iface.event_synchronize(event);
+}
+
+void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
+ GGML_ASSERT(backend->iface.event_wait != NULL);
+
+ backend->iface.event_wait(backend, event);
+}
+
+// backend registry
+
+#define GGML_REG_MAX_BACKENDS 64
+
+struct ggml_backend_reg {
+ char name[128];
+ ggml_backend_init_fn init_fn;
+ ggml_backend_buffer_type_t default_buffer_type;
+ void * user_data;
+};
+
+static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
+static size_t ggml_backend_registry_count = 0;
+
+GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
+
+GGML_CALL static void ggml_backend_registry_init(void) {
+ static bool initialized = false;
+
+ if (initialized) {
+ return;
+ }
+
+ initialized = true;
+
+ ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
+
+ // add forward decls here to avoid including the backend headers
+#ifdef GGML_USE_CUDA
+ extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
+ ggml_backend_cuda_reg_devices();
+#endif
+
+#ifdef GGML_USE_SYCL
+ extern void ggml_backend_sycl_reg_devices(void);
+ ggml_backend_sycl_reg_devices();
+#endif
+
+#ifdef GGML_USE_METAL
+ extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
+ extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
+ ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
+#endif
+
+#ifdef GGML_USE_VULKAN
+ extern GGML_CALL int ggml_backend_vk_reg_devices(void);
+ ggml_backend_vk_reg_devices();
+#endif
+
+#ifdef GGML_USE_KOMPUTE
+ extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
+ ggml_backend_kompute_reg_devices();
+#endif
+
+#ifdef GGML_USE_CANN
+ extern GGML_CALL int ggml_backend_cann_reg_devices(void);
+ ggml_backend_cann_reg_devices();
+#endif
+}
+
+GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
+ GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
+
+ size_t id = ggml_backend_registry_count;
+
+ ggml_backend_registry[id] = (struct ggml_backend_reg) {
+ /* .name = */ {0},
+ /* .fn = */ init_fn,
+ /* .default_buffer_type = */ default_buffer_type,
+ /* .user_data = */ user_data,
+ };
+
+ snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
+
+#ifndef NDEBUG
+ fprintf(stderr, "%s: registered backend %s\n", __func__, name);
+#endif
+
+ ggml_backend_registry_count++;
+}
+
+size_t ggml_backend_reg_get_count(void) {
+ ggml_backend_registry_init();
+
+ return ggml_backend_registry_count;
+}
+
+size_t ggml_backend_reg_find_by_name(const char * name) {
+ ggml_backend_registry_init();
+
+ for (size_t i = 0; i < ggml_backend_registry_count; i++) {
+ // TODO: case insensitive in a portable way
+ if (strcmp(ggml_backend_registry[i].name, name) == 0) {
+ return i;
+ }
+ }
+
+ // not found
+ return SIZE_MAX;
+}
+
+// init from backend:params string
+ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
+ ggml_backend_registry_init();
+
+ const char * params = strchr(backend_str, ':');
+ char backend_name[128];
+ if (params == NULL) {
+ snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
+ params = "";
+ } else {
+ snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
+ params++;
+ }
+
+ size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
+
+ if (backend_i == SIZE_MAX) {
+ fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
+ return NULL;
+ }
+
+ return ggml_backend_reg_init_backend(backend_i, params);
+}
+
+const char * ggml_backend_reg_get_name(size_t i) {
+ ggml_backend_registry_init();
+
+ GGML_ASSERT(i < ggml_backend_registry_count);
+ return ggml_backend_registry[i].name;
+}
+
+ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
+ ggml_backend_registry_init();
+
+ GGML_ASSERT(i < ggml_backend_registry_count);
+ return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
+}
+
+ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
+ ggml_backend_registry_init();
+
+ GGML_ASSERT(i < ggml_backend_registry_count);
+ return ggml_backend_registry[i].default_buffer_type;
+}
+
+ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
+ ggml_backend_registry_init();
+
+ GGML_ASSERT(i < ggml_backend_registry_count);
+ return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
+}
+
+// backend CPU
+
+static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
+
+GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
+ return "CPU";
+
+ GGML_UNUSED(buffer);
+}
+
+GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
+ uintptr_t data = (uintptr_t)buffer->context;
+
+ // align the buffer
+ if (data % TENSOR_ALIGNMENT != 0) {
+ data = GGML_PAD(data, TENSOR_ALIGNMENT);
+ }
+
+ return (void *)data;
+}
+
+GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ free(buffer->context);
+}
+
+GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ memcpy((char *)tensor->data + offset, data, size);
+
+ GGML_UNUSED(buffer);
+}
+
+GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ memcpy(data, (const char *)tensor->data + offset, size);
+
+ GGML_UNUSED(buffer);
+}
+
+GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
+ if (ggml_backend_buffer_is_host(src->buffer)) {
+ memcpy(dst->data, src->data, ggml_nbytes(src));
+ return true;
+ }
+ return false;
+
+ GGML_UNUSED(buffer);
+}
+
+GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ memset(buffer->context, value, buffer->size);
+}
+
+static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
+ /* .get_name = */ ggml_backend_cpu_buffer_name,
+ /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
+ /* .get_base = */ ggml_backend_cpu_buffer_get_base,
+ /* .init_tensor = */ NULL, // no initialization required
+ /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
+ /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
+ /* .clear = */ ggml_backend_cpu_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+// for buffers from ptr, free is not called
+static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
+ /* .get_name = */ ggml_backend_cpu_buffer_name,
+ /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
+ /* .get_base = */ ggml_backend_cpu_buffer_get_base,
+ /* .init_tensor = */ NULL, // no initialization required
+ /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
+ /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
+ /* .clear = */ ggml_backend_cpu_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+ return "CPU";
+
+ GGML_UNUSED(buft);
+}
+
+GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
+ void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
+ if (data == NULL) {
+ fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
+ return NULL;
+ }
+
+ return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
+}
+
+GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+ return TENSOR_ALIGNMENT;
+
+ GGML_UNUSED(buft);
+}
+
+GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+ return true;
+
+ GGML_UNUSED(buft);
+}
+
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
+ static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
+ /* .iface = */ {
+ /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
+ /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
+ /* .get_max_size = */ NULL, // defaults to SIZE_MAX
+ /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
+ /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
+ },
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_cpu_buffer_type;
+}
+
+#ifdef GGML_USE_CPU_HBM
+
+// buffer type HBM
+
+#include <hbwmalloc.h>
+
+GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+ return "CPU_HBM";
+
+ GGML_UNUSED(buft);
+}
+
+GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
+ return "CPU_HBM";
+
+ GGML_UNUSED(buf);
+}
+
+GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ hbw_free(buffer->context);
+}
+
+GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ //void * ptr = hbw_malloc(size);
+ void * ptr;
+ int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
+ if (result != 0) {
+ fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
+ return NULL;
+ }
+
+ ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
+ buffer->buft = buft;
+ buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
+ buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
+
+ return buffer;
+}
+
+ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
+ static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
+ /* .iface = */ {
+ /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
+ /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
+ /* .get_max_size = */ NULL, // defaults to SIZE_MAX
+ /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
+ /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
+ },
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_cpu_buffer_type_hbm;
+}
+#endif
+
+struct ggml_backend_cpu_context {
+ int n_threads;
+ void * work_data;
+ size_t work_size;
+
+ ggml_abort_callback abort_callback;
+ void * abort_callback_data;
+};
+
+GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
+ return "CPU";
+
+ GGML_UNUSED(backend);
+}
+
+GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
+ struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
+ free(cpu_ctx->work_data);
+ free(cpu_ctx);
+ free(backend);
+}
+
+GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
+ return ggml_backend_cpu_buffer_type();
+
+ GGML_UNUSED(backend);
+}
+
+struct ggml_backend_plan_cpu {
+ struct ggml_cplan cplan;
+ struct ggml_cgraph cgraph;
+};
+
+GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
+ struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
+
+ struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
+
+ cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
+ cpu_plan->cgraph = *cgraph; // FIXME: deep copy
+
+ if (cpu_plan->cplan.work_size > 0) {
+ cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
+ if (cpu_plan->cplan.work_data == NULL) {
+ free(cpu_plan);
+ return NULL;
+ }
+ }
+
+ cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
+ cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
+
+ return cpu_plan;
+}
+
+GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+ struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
+
+ free(cpu_plan->cplan.work_data);
+ free(cpu_plan);
+
+ GGML_UNUSED(backend);
+}
+
+GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+ struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
+
+ return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
+
+ GGML_UNUSED(backend);
+}
+
+GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
+
+ struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
+
+ if (cpu_ctx->work_size < cplan.work_size) {
+ free(cpu_ctx->work_data);
+ cpu_ctx->work_data = malloc(cplan.work_size);
+ if (cpu_ctx->work_data == NULL) {
+ cpu_ctx->work_size = 0;
+ return GGML_STATUS_ALLOC_FAILED;
+ }
+ cpu_ctx->work_size = cplan.work_size;
+ }
+ cplan.work_data = cpu_ctx->work_data;
+
+ cplan.abort_callback = cpu_ctx->abort_callback;
+ cplan.abort_callback_data = cpu_ctx->abort_callback_data;
+
+ return ggml_graph_compute(cgraph, &cplan);
+}
+
+GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ switch (op->op) {
+ case GGML_OP_CPY:
+ return
+ op->type != GGML_TYPE_IQ2_XXS &&
+ op->type != GGML_TYPE_IQ2_XS &&
+ op->type != GGML_TYPE_IQ1_S &&
+ op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
+ case GGML_OP_MUL_MAT:
+ return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
+ default:
+ return true;
+ }
+
+ GGML_UNUSED(backend);
+}
+
+GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+ return ggml_backend_buft_is_host(buft);
+
+ GGML_UNUSED(backend);
+}
+
+static struct ggml_backend_i cpu_backend_i = {
+ /* .get_name = */ ggml_backend_cpu_name,
+ /* .free = */ ggml_backend_cpu_free,
+ /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
+ /* .set_tensor_async = */ NULL,
+ /* .get_tensor_async = */ NULL,
+ /* .cpy_tensor_async = */ NULL,
+ /* .synchronize = */ NULL,
+ /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
+ /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
+ /* .graph_plan_update = */ NULL,
+ /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
+ /* .graph_compute = */ ggml_backend_cpu_graph_compute,
+ /* .supports_op = */ ggml_backend_cpu_supports_op,
+ /* .supports_buft = */ ggml_backend_cpu_supports_buft,
+ /* .offload_op = */ NULL,
+ /* .event_new = */ NULL,
+ /* .event_free = */ NULL,
+ /* .event_record = */ NULL,
+ /* .event_wait = */ NULL,
+ /* .event_synchronize = */ NULL,
+};
+
+static ggml_guid_t ggml_backend_cpu_guid(void) {
+ static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
+ return &guid;
+}
+
+ggml_backend_t ggml_backend_cpu_init(void) {
+ struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
+ if (ctx == NULL) {
+ return NULL;
+ }
+
+ ctx->n_threads = GGML_DEFAULT_N_THREADS;
+ ctx->work_data = NULL;
+ ctx->work_size = 0;
+ ctx->abort_callback = NULL;
+ ctx->abort_callback_data = NULL;
+
+ ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
+ if (cpu_backend == NULL) {
+ free(ctx);
+ return NULL;
+ }
+
+ *cpu_backend = (struct ggml_backend) {
+ /* .guid = */ ggml_backend_cpu_guid(),
+ /* .interface = */ cpu_backend_i,
+ /* .context = */ ctx
+ };
+ return cpu_backend;
+}
+
+GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
+}
+
+void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
+ GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
+
+ struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
+ ctx->n_threads = n_threads;
+}
+
+void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
+ GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
+
+ struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
+ ctx->abort_callback = abort_callback;
+ ctx->abort_callback_data = abort_callback_data;
+}
+
+GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
+ GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
+ return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
+}
+
+GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
+ return ggml_backend_cpu_init();
+
+ GGML_UNUSED(params);
+ GGML_UNUSED(user_data);
+}
+
+// multi-buffer buffer
+
+struct ggml_backend_multi_buffer_context {
+ ggml_backend_buffer_t * buffers;
+ size_t n_buffers;
+};
+
+typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
+
+GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
+ ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
+
+ return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
+}
+
+GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
+ for (size_t i = 0; i < ctx->n_buffers; i++) {
+ ggml_backend_buffer_free(ctx->buffers[i]);
+ }
+
+ free(ctx->buffers);
+ free(ctx);
+}
+
+GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
+ for (size_t i = 0; i < ctx->n_buffers; i++) {
+ ggml_backend_buffer_clear(ctx->buffers[i], value);
+ }
+}
+
+static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
+ static struct ggml_backend_buffer_i multi_backend_buffer_i = {
+ /* .get_name = */ ggml_backend_multi_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
+ /* .get_base = */ NULL,
+ /* .init_tensor = */ NULL,
+ /* .set_tensor = */ NULL,
+ /* .get_tensor = */ NULL,
+ /* .cpy_tensor = */ NULL,
+ /* .clear = */ ggml_backend_multi_buffer_clear,
+ /* .reset = */ NULL,
+ };
+
+ return multi_backend_buffer_i;
+}
+
+GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
+ ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
+ ctx->n_buffers = n_buffers;
+ ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
+
+ GGML_ASSERT(ctx->buffers != NULL);
+
+ size_t total_size = 0;
+ for (size_t i = 0; i < n_buffers; i++) {
+ ctx->buffers[i] = buffers[i];
+ total_size += ggml_backend_buffer_get_size(buffers[i]);
+ }
+
+ return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
+}
+
+GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
+ return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
+}
+
+GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
+ GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
+ ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
+ for (size_t i = 0; i < ctx->n_buffers; i++) {
+ ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
+ }
+}
+
+// creates a copy of the tensor with the same memory layout
+static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
+ struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ dup->nb[i] = tensor->nb[i];
+ }
+ return dup;
+}
+
+static bool ggml_is_view_op(enum ggml_op op) {
+ return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
+}
+
+// scheduler
+
+#ifndef GGML_SCHED_MAX_BACKENDS
+#define GGML_SCHED_MAX_BACKENDS 16
+#endif
+
+#ifndef GGML_SCHED_MAX_SPLITS
+#define GGML_SCHED_MAX_SPLITS 2048
+#endif
+
+#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
+#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
+#endif
+
+#ifndef GGML_SCHED_MAX_COPIES
+#define GGML_SCHED_MAX_COPIES 4
+#endif
+
+struct ggml_backend_sched_split {
+ int backend_id;
+ int i_start;
+ int i_end;
+ struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
+ int n_inputs;
+ // graph view of this split
+ struct ggml_cgraph graph;
+};
+
+struct ggml_backend_sched {
+ bool is_reset; // true if the scheduler has been reset since the last graph split
+ bool is_alloc;
+
+ int n_backends;
+
+ ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
+ ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
+ ggml_gallocr_t galloc;
+
+ // hash keys of the nodes in the graph
+ struct ggml_hash_set hash_set;
+ // hash values
+ int * tensor_backend_id;
+ struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
+
+ int * node_backend_ids; // [graph_size]
+ int * leaf_backend_ids; // [graph_size]
+
+ int * prev_node_backend_ids; // [graph_size]
+ int * prev_leaf_backend_ids; // [graph_size]
+
+ // copy of the graph with modified inputs
+ struct ggml_cgraph * graph;
+
+ // graph splits
+ struct ggml_backend_sched_split * splits;
+ int n_splits;
+ int splits_capacity;
+
+ // pipeline parallelism support
+ int n_copies;
+ int cur_copy;
+ ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
+ struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
+ int n_graph_inputs;
+
+ struct ggml_context * ctx;
+
+ ggml_backend_sched_eval_callback callback_eval;
+ void * callback_eval_user_data;
+
+ bool debug;
+
+ // align context_buffer to GGML_MEM_ALIGN
+#ifdef _MSC_VER
+ __declspec(align(GGML_MEM_ALIGN))
+#else
+ __attribute__((aligned(GGML_MEM_ALIGN)))
+#endif
+ char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
+};
+
+#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
+#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
+
+// returns the priority of the backend, lower id is higher priority
+static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
+ for (int i = 0; i < sched->n_backends; i++) {
+ if (sched->backends[i] == backend) {
+ return i;
+ }
+ }
+ return -1;
+}
+
+static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
+ ggml_backend_buffer_t buffer = tensor->buffer;
+ if (buffer == NULL) {
+ return -1;
+ }
+
+ // find highest prio backend that supports the buffer type and the op
+ for (int i = 0; i < sched->n_backends; i++) {
+ if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
+ ggml_backend_supports_op(sched->backends[i], op)) {
+ return i;
+ }
+ }
+
+#ifndef NDEBUG
+ fprintf(stderr, "%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
+ __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
+#endif
+
+ return -1;
+}
+
+#if 0
+static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
+#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
+#define GET_CAUSE(node) causes[hash_id(node)]
+#else
+#define SET_CAUSE(node, ...)
+#define GET_CAUSE(node) ""
+#endif
+
+// returns the backend that should be used for the node based on the current locations
+static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
+ // TODO: use supports_op to check if the backend supports the op
+
+ // assign pre-allocated nodes to their backend
+ int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
+ if (cur_backend_id != -1) {
+ SET_CAUSE(tensor, "1.dst");
+ return cur_backend_id;
+ }
+
+ // view_src
+ if (tensor->view_src != NULL) {
+ cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
+ if (cur_backend_id != -1) {
+ SET_CAUSE(tensor, "1.vsrc");
+ return cur_backend_id;
+ }
+ }
+
+ // graph input
+ if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
+ cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
+ SET_CAUSE(tensor, "1.inp");
+ return cur_backend_id;
+ }
+
+ // assign nodes that use weights to the backend of the weights
+ // operations with weights are preferably run on the same backend as the weights
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
+ const struct ggml_tensor * src = tensor->src[i];
+ if (src == NULL) {
+ continue;
+ }
+ if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
+ int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
+ // check if a backend with higher prio wants to offload the op
+ if (src_backend_id == sched->n_backends - 1) {
+ for (int b = 0; b < src_backend_id; b++) {
+ if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
+ SET_CAUSE(tensor, "1.off");
+ return b;
+ }
+ }
+ }
+ SET_CAUSE(tensor, "1.wgt%d", i);
+ return src_backend_id;
+ }
+ }
+
+ return -1;
+}
+
+static char * fmt_size(size_t size) {
+ static char buffer[128];
+ if (size >= 1024*1024) {
+ snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
+ } else {
+ snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
+ }
+ return buffer;
+}
+
+static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ int cur_split = 0;
+ for (int i = 0; i < graph->n_nodes; i++) {
+ if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
+ ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
+ fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
+ sched->splits[cur_split].n_inputs);
+ for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
+ fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
+ fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
+ }
+ fprintf(stderr, "\n");
+ cur_split++;
+ }
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
+ fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
+ fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
+ fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
+ fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
+ }
+ fprintf(stderr, "\n");
+ }
+}
+
+static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
+ ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
+ ggml_backend_buffer_type_t buft = NULL;
+
+ if (buf) {
+ // the tensor is already allocated
+ buft = buf->buft;
+ } else {
+ // see if the tensor already has a backend assigned, and use the buffer type of that backend
+ int tensor_backend_id = tensor_backend_id(t);
+ if (tensor_backend_id == -1 && t->view_src) {
+ tensor_backend_id = tensor_backend_id(t->view_src);
+ }
+ if (tensor_backend_id != -1) {
+ buft = sched->bufts[tensor_backend_id];
+ }
+ }
+
+ return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
+}
+
+static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
+ if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
+ *node_backend_id = cur_backend_id;
+ SET_CAUSE(node, "2.sup");
+ }
+}
+
+// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
+static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ // reset splits
+ sched->n_splits = 0;
+ sched->n_graph_inputs = 0;
+ sched->is_reset = false;
+
+ struct ggml_init_params params = {
+ /* .mem_size = */ sizeof(sched->context_buffer),
+ /* .mem_buffer = */ sched->context_buffer,
+ /* .no_alloc = */ true
+ };
+
+ ggml_free(sched->ctx);
+
+ sched->ctx = ggml_init(params);
+ if (sched->ctx == NULL) {
+ fprintf(stderr, "%s: failed to initialize context\n", __func__);
+ GGML_ASSERT(false);
+ }
+
+ // pass 1: assign backends to ops with pre-allocated inputs
+ for (int i = 0; i < graph->n_leafs; i++) {
+ struct ggml_tensor * leaf = graph->leafs[i];
+ int * leaf_backend_id = &tensor_backend_id(leaf);
+ if (*leaf_backend_id != -1) {
+ // do not overwrite user assignments
+ continue;
+ }
+ *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
+ }
+
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id != -1) {
+ // do not overwrite user assignments
+ continue;
+ }
+ *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
+ // src
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ int * src_backend_id = &tensor_backend_id(src);
+ if (*src_backend_id == -1) {
+ *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
+ }
+ }
+ }
+
+ // pass 2: expand current backend assignments
+ // assign the same backend to adjacent nodes
+ // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
+ // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
+ // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
+ // expand gpu down
+ {
+ int cur_backend_id = -1;
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id != -1) {
+ if (*node_backend_id == sched->n_backends - 1) {
+ // skip cpu (lowest prio backend)
+ cur_backend_id = -1;
+ } else {
+ cur_backend_id = *node_backend_id;
+ }
+ } else if (cur_backend_id != -1) {
+ ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
+ }
+ }
+ }
+ // expand gpu up
+ {
+ int cur_backend_id = -1;
+ for (int i = graph->n_nodes - 1; i >= 0; i--) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id != -1) {
+ if (*node_backend_id == sched->n_backends - 1) {
+ // skip cpu (lowest prio backend)
+ cur_backend_id = -1;
+ } else {
+ cur_backend_id = *node_backend_id;
+ }
+ } else if (cur_backend_id != -1) {
+ ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
+ }
+ }
+ }
+ // expand rest down
+ {
+ int cur_backend_id = -1;
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id != -1) {
+ cur_backend_id = *node_backend_id;
+ } else if (cur_backend_id != -1) {
+ ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
+ }
+ }
+ }
+ // expand rest up
+ {
+ int cur_backend_id = -1;
+ for (int i = graph->n_nodes - 1; i >= 0; i--) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id != -1) {
+ cur_backend_id = *node_backend_id;
+ } else if (cur_backend_id != -1) {
+ ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
+ }
+ }
+ }
+
+ // pass 3: upgrade nodes to higher prio backends with compatible buffer types
+ // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
+ // however, we also need to verify that the sources are in compatible buffer types
+ // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
+ // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
+ // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
+ // additionally, set remaining unassigned nodes to the backend with the most supported inputs
+ // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id == -1) {
+ // unassigned node: find the backend with the most supported inputs
+ int n_supported_best = -1;
+ for (int b = 0; b < sched->n_backends; b++) {
+ if (ggml_backend_supports_op(sched->backends[b], node)) {
+ int n_supported = 0;
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
+ n_supported++;
+ }
+ }
+ if (n_supported > n_supported_best) {
+ n_supported_best = n_supported;
+ *node_backend_id = b;
+ SET_CAUSE(node, "3.best");
+ }
+ }
+ }
+ } else {
+ // assigned node: upgrade to higher prio backend if possible
+ for (int b = 0; b < *node_backend_id; b++) {
+ if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
+ bool supported = true;
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
+ supported = false;
+ break;
+ }
+ }
+ if (supported) {
+ *node_backend_id = b;
+ SET_CAUSE(node, "3.upg");
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // pass 4: assign backends to remaining src from dst and view_src
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ int * cur_backend_id = &tensor_backend_id(node);
+ if (node->view_src != NULL && *cur_backend_id == -1) {
+ *cur_backend_id = tensor_backend_id(node->view_src);
+ SET_CAUSE(node, "4.vsrc");
+ }
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ int * src_backend_id = &tensor_backend_id(src);
+ if (*src_backend_id == -1) {
+ if (src->view_src != NULL) {
+ // views are always on the same backend as the source
+ *src_backend_id = tensor_backend_id(src->view_src);
+ SET_CAUSE(src, "4.vsrc");
+ } else {
+ *src_backend_id = *cur_backend_id;
+ SET_CAUSE(src, "4.cur");
+ }
+ }
+ }
+ }
+
+ // pass 4: split graph, find tensors that need to be copied
+ {
+ int i_split = 0;
+ struct ggml_backend_sched_split * split = &sched->splits[0];
+ // find the backend of the first split, skipping view ops
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (!ggml_is_view_op(node->op)) {
+ split->backend_id = tensor_backend_id(node);
+ break;
+ }
+ }
+ split->i_start = 0;
+ split->n_inputs = 0;
+ memset(split->inputs, 0, sizeof(split->inputs)); //HACK
+ int cur_backend_id = split->backend_id;
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+
+ const int node_backend_id = tensor_backend_id(node);
+
+ GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
+
+ // check if we should start a new split based on the sources of the current node
+ bool need_new_split = false;
+ if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ // check if a weight is on a different backend
+ // by starting a new split, the memory of the previously offloaded weights can be reused
+ if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
+ int src_backend_id = tensor_backend_id(src);
+ if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
+ need_new_split = true;
+ break;
+ }
+ }
+ // check if the split has too many inputs
+ // FIXME: count the number of inputs instead of only checking when full
+ if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
+ const size_t id = hash_id(src);
+ int src_backend_id = sched->tensor_backend_id[id];
+ bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
+ if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL && !supported) {
+ //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
+ need_new_split = true;
+ break;
+ }
+ }
+ }
+ }
+
+ if (node_backend_id != cur_backend_id || need_new_split) {
+ split->i_end = i;
+ i_split++;
+ if (i_split >= sched->splits_capacity) {
+ sched->splits_capacity *= 2;
+ sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
+ GGML_ASSERT(sched->splits != NULL);
+ }
+ GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
+ split = &sched->splits[i_split];
+ split->backend_id = node_backend_id;
+ split->i_start = i;
+ split->n_inputs = 0;
+ cur_backend_id = node_backend_id;
+ }
+
+ // find inputs that are not on the same backend
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+
+ const int src_backend_id = tensor_backend_id(src);
+ assert(src_backend_id != -1); // all inputs should be assigned by now
+
+ if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
+ size_t id = hash_id(src);
+ if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
+ ggml_backend_t backend = sched->backends[src_backend_id];
+ for (int c = 0; c < sched->n_copies; c++) {
+ struct ggml_tensor * tensor_copy;
+ if (c == sched->cur_copy) {
+ tensor_copy = src; // use the original tensor as the current copy
+ } else {
+ tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
+ ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
+ }
+ if (sched->n_copies > 1) {
+ ggml_set_input(tensor_copy);
+ ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
+ }
+ sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
+ SET_CAUSE(tensor_copy, "4.cpy");
+ }
+ int n_graph_inputs = sched->n_graph_inputs++;
+ GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
+ sched->graph_inputs[n_graph_inputs] = src;
+ }
+ }
+
+ bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
+ if (src_backend_id != cur_backend_id && !supported) {
+ // create a copy of the input in the split's backend
+ const size_t id = hash_id(src);
+ if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
+ ggml_backend_t backend = sched->backends[cur_backend_id];
+ for (int c = 0; c < sched->n_copies; c++) {
+ struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
+ ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
+ if (sched->n_copies > 1) {
+ ggml_set_input(tensor_copy);
+ ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
+ }
+ sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
+ SET_CAUSE(tensor_copy, "4.cpy");
+ }
+ int n_inputs = split->n_inputs++;
+ GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
+ split->inputs[n_inputs] = src;
+ }
+ node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
+ }
+ }
+ }
+ split->i_end = graph->n_nodes;
+ sched->n_splits = i_split + 1;
+ }
+
+ if (sched->debug) {
+ ggml_backend_sched_print_assignments(sched, graph);
+ }
+
+ // swap node_backend_ids and leaf_backend_ids and prevs
+ {
+ int * tmp = sched->node_backend_ids;
+ sched->node_backend_ids = sched->prev_node_backend_ids;
+ sched->prev_node_backend_ids = tmp;
+
+ tmp = sched->leaf_backend_ids;
+ sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
+ sched->prev_leaf_backend_ids = tmp;
+ }
+
+ // create copies of the graph for each split
+ // TODO: avoid this copy
+ struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
+ for (int i = 0; i < sched->n_splits; i++) {
+ struct ggml_backend_sched_split * split = &sched->splits[i];
+ split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
+
+ // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
+ for (int j = 0; j < split->n_inputs; j++) {
+ assert(graph_copy->size > (graph_copy->n_nodes + 1));
+
+ struct ggml_tensor * input = split->inputs[j];
+ const size_t input_id = hash_id(input);
+ struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
+
+ // add a dependency to the input source so that it is not freed before the copy is done
+ struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
+ input_dep->src[0] = input;
+ sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
+ graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
+
+ // add a dependency to the input copy so that it is allocated at the start of the split
+ sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
+ graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
+ }
+
+ for (int j = split->i_start; j < split->i_end; j++) {
+ assert(graph_copy->size > graph_copy->n_nodes);
+ sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
+ graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
+ }
+ }
+
+ if (sched->n_copies > 1) {
+ // add input copies as leafs so that they are allocated first
+ for (int i = 0; i < sched->n_graph_inputs; i++) {
+ struct ggml_tensor * input = sched->graph_inputs[i];
+ size_t id = hash_id(input);
+ int backend_id = tensor_backend_id(input);
+ for (int c = 0; c < sched->n_copies; c++) {
+ struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
+ sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
+ graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
+ }
+ }
+
+ for (int i = 0; i < sched->n_splits; i++) {
+ struct ggml_backend_sched_split * split = &sched->splits[i];
+ int backend_id = split->backend_id;
+ for (int j = 0; j < split->n_inputs; j++) {
+ struct ggml_tensor * input = split->inputs[j];
+ size_t id = hash_id(input);
+ for (int c = 0; c < sched->n_copies; c++) {
+ struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
+ sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
+ graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
+ }
+ }
+ }
+ }
+
+ // add leafs from the original graph
+ for (int i = 0; i < graph->n_leafs; i++) {
+ struct ggml_tensor * leaf = graph->leafs[i];
+ sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
+ graph_copy->leafs[graph_copy->n_leafs++] = leaf;
+ }
+
+ sched->graph = graph_copy;
+}
+
+static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
+ bool backend_ids_changed = false;
+ for (int i = 0; i < sched->graph->n_nodes; i++) {
+ if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
+ sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
+ backend_ids_changed = true;
+ break;
+ }
+ }
+ if (!backend_ids_changed) {
+ for (int i = 0; i < sched->graph->n_leafs; i++) {
+ if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
+ sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
+ backend_ids_changed = true;
+ break;
+ }
+ }
+ }
+
+ // allocate graph
+ if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
+ // the re-allocation may cause the split inputs to be moved to a different address
+ ggml_backend_sched_synchronize(sched);
+#ifndef NDEBUG
+ fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
+#endif
+ ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
+ if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
+ fprintf(stderr, "%s: failed to allocate graph\n", __func__);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
+ struct ggml_backend_sched_split * splits = sched->splits;
+
+ for (int i = 0; i < sched->n_splits; i++) {
+ struct ggml_backend_sched_split * split = &splits[i];
+ int split_backend_id = split->backend_id;
+ ggml_backend_t split_backend = sched->backends[split_backend_id];
+
+ // copy the input tensors to the split backend
+ for (int j = 0; j < split->n_inputs; j++) {
+ ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
+ struct ggml_tensor * input = split->inputs[j];
+ struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
+
+ if (input->flags & GGML_TENSOR_FLAG_INPUT) {
+ // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
+ if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
+ ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
+ } else {
+ ggml_backend_synchronize(split_backend);
+ }
+ ggml_backend_tensor_copy(input, input_cpy);
+ } else {
+ // wait for the split backend to finish using the input before overwriting it
+ if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
+ ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
+ } else {
+ ggml_backend_synchronize(split_backend);
+ }
+ ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
+ }
+ }
+
+ if (!sched->callback_eval) {
+ enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
+ if (ec != GGML_STATUS_SUCCESS) {
+ return ec;
+ }
+ } else {
+ // similar to ggml_backend_compare_graph_backend
+ for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
+ struct ggml_tensor * t = split->graph.nodes[j0];
+
+ // check if the user needs data from this node
+ bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
+
+ int j1 = j0;
+
+ // determine the range [j0, j1] of nodes that can be computed together
+ while (!need && j1 < split->graph.n_nodes - 1) {
+ t = split->graph.nodes[++j1];
+ need = sched->callback_eval(t, true, sched->callback_eval_user_data);
+ }
+
+ struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
+
+ enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
+ if (ec != GGML_STATUS_SUCCESS) {
+ return ec;
+ }
+
+ // TODO: pass backend to the callback, then the user can decide if they want to synchronize
+ ggml_backend_synchronize(split_backend);
+
+ if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
+ break;
+ }
+
+ j0 = j1;
+ }
+ }
+
+ // record the event of this copy
+ if (split->n_inputs > 0) {
+ if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
+ ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
+ }
+ }
+ }
+
+ sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
+
+ return GGML_STATUS_SUCCESS;
+}
+
+ggml_backend_sched_t ggml_backend_sched_new(
+ ggml_backend_t * backends,
+ ggml_backend_buffer_type_t * bufts,
+ int n_backends,
+ size_t graph_size,
+ bool parallel) {
+ GGML_ASSERT(n_backends > 0);
+ GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
+ GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
+
+ struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
+
+ sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
+
+ // initialize hash table
+ sched->hash_set = ggml_hash_set_new(graph_size);
+ sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
+ sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
+
+ const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
+ sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
+ sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
+ sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
+ sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
+
+ sched->n_backends = n_backends;
+
+ sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
+
+ const int initial_splits_capacity = 16;
+ sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
+ sched->splits_capacity = initial_splits_capacity;
+
+ for (int b = 0; b < n_backends; b++) {
+ sched->backends[b] = backends[b];
+ sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
+ GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
+ if (sched->n_copies > 1) {
+ for (int c = 0; c < sched->n_copies; c++) {
+ sched->events[b][c] = ggml_backend_event_new(backends[b]);
+ }
+ }
+ }
+
+ sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
+
+ ggml_backend_sched_reset(sched);
+
+ return sched;
+}
+
+void ggml_backend_sched_free(ggml_backend_sched_t sched) {
+ if (sched == NULL) {
+ return;
+ }
+ for (int b = 0; b < sched->n_backends; b++) {
+ for (int c = 0; c < sched->n_copies; c++) {
+ ggml_backend_event_free(sched->events[b][c]);
+ }
+ }
+ ggml_gallocr_free(sched->galloc);
+ ggml_free(sched->ctx);
+ free(sched->splits);
+ free(sched->hash_set.keys);
+ free(sched->tensor_backend_id);
+ free(sched->tensor_copies);
+ free(sched->node_backend_ids);
+ free(sched->leaf_backend_ids);
+ free(sched->prev_node_backend_ids);
+ free(sched->prev_leaf_backend_ids);
+ free(sched);
+}
+
+void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
+ // reset state for the next run
+ if (!sched->is_reset) {
+ size_t hash_size = sched->hash_set.size;
+ memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
+ memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
+ memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
+
+ sched->is_reset = true;
+ }
+ sched->is_alloc = false;
+}
+
+bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
+ GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
+
+ ggml_backend_sched_split_graph(sched, measure_graph);
+
+ // TODO: extract this to a separate function
+ if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
+ return false;
+ }
+
+ ggml_backend_sched_reset(sched);
+ ggml_backend_sched_synchronize(sched);
+
+ return true;
+}
+
+bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
+
+ ggml_backend_sched_split_graph(sched, graph);
+
+ if (!ggml_backend_sched_alloc_splits(sched)) {
+ return false;
+ }
+
+ sched->is_alloc = true;
+
+ return true;
+}
+
+enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
+ ggml_backend_sched_synchronize(sched);
+ return err;
+}
+
+enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ if (!sched->is_reset && !sched->is_alloc) {
+ ggml_backend_sched_reset(sched);
+ }
+
+ if (!sched->is_alloc) {
+ if (!ggml_backend_sched_alloc_graph(sched, graph)) {
+ return GGML_STATUS_ALLOC_FAILED;
+ }
+ }
+
+ return ggml_backend_sched_compute_splits(sched);
+}
+
+void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
+ for (int i = 0; i < sched->n_backends; i++) {
+ ggml_backend_synchronize(sched->backends[i]);
+ }
+}
+
+void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
+ sched->callback_eval = callback;
+ sched->callback_eval_user_data = user_data;
+}
+
+int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
+ return sched->n_splits;
+}
+
+int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
+ return sched->n_copies;
+}
+
+int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
+ return sched->n_backends;
+}
+
+ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
+ GGML_ASSERT(i >= 0 && i < sched->n_backends);
+ return sched->backends[i];
+}
+
+size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
+ int backend_index = ggml_backend_sched_backend_id(sched, backend);
+ GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
+
+ return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
+}
+
+void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
+ int backend_index = ggml_backend_sched_backend_id(sched, backend);
+ GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
+ tensor_backend_id(node) = backend_index;
+ SET_CAUSE(node, "usr");
+}
+
+ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
+ int backend_index = tensor_backend_id(node);
+ if (backend_index == -1) {
+ return NULL;
+ }
+ return sched->backends[backend_index];
+}
+
+// utils
+
+void ggml_backend_view_init(struct ggml_tensor * tensor) {
+ GGML_ASSERT(tensor->buffer == NULL);
+ GGML_ASSERT(tensor->view_src != NULL);
+ GGML_ASSERT(tensor->view_src->buffer != NULL);
+ GGML_ASSERT(tensor->view_src->data != NULL);
+
+ tensor->buffer = tensor->view_src->buffer;
+ tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
+ ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
+}
+
+void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
+ GGML_ASSERT(tensor->buffer == NULL);
+ GGML_ASSERT(tensor->data == NULL);
+ GGML_ASSERT(tensor->view_src == NULL);
+ GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
+ GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
+ (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
+
+ tensor->buffer = buffer;
+ tensor->data = addr;
+ ggml_backend_buffer_init_tensor(buffer, tensor);
+}
+
+static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
+ struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
+
+ GGML_ASSERT(src != NULL);
+ GGML_ASSERT(src->data && "graph must be allocated");
+
+ size_t id = ggml_hash_insert(hash_set, src);
+ if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
+ return node_copies[ggml_hash_find(hash_set, src)];
+ }
+
+ struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
+ if (src->view_src != NULL) {
+ dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
+ dst->view_offs = src->view_offs;
+ }
+ dst->op = src->op;
+ memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
+ ggml_set_name(dst, src->name);
+
+ // copy src
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
+ struct ggml_tensor * s = src->src[i];
+ if (s == NULL) {
+ continue;
+ }
+ dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
+ }
+
+ node_copies[id] = dst;
+ return dst;
+}
+
+static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
+ size_t id = ggml_hash_find(hash_set, src);
+ if (node_init[id]) {
+ return;
+ }
+ node_init[id] = true;
+
+ struct ggml_tensor * dst = node_copies[id];
+ if (dst->view_src != NULL) {
+ graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
+ ggml_backend_view_init(dst);
+ }
+ else {
+ ggml_backend_tensor_copy(src, dst);
+ }
+
+ // init src
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
+ struct ggml_tensor * s = src->src[i];
+ if (s == NULL) {
+ continue;
+ }
+ graph_copy_init_tensor(hash_set, node_copies, node_init, s);
+ }
+}
+
+struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
+ struct ggml_hash_set hash_set = {
+ /* .size = */ graph->visited_hash_table.size,
+ /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
+ };
+ struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
+ bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
+
+ struct ggml_init_params params = {
+ /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
+ /* .mem_buffer = */ NULL,
+ /* .no_alloc = */ true
+ };
+
+ struct ggml_context * ctx_allocated = ggml_init(params);
+ struct ggml_context * ctx_unallocated = ggml_init(params);
+
+ if (ctx_allocated == NULL || ctx_unallocated == NULL) {
+ fprintf(stderr, "failed to allocate context for graph copy\n");
+ free(hash_set.keys);
+ free(node_copies);
+ free(node_init);
+ ggml_free(ctx_allocated);
+ ggml_free(ctx_unallocated);
+ return (struct ggml_backend_graph_copy) {
+ /* .buffer = */ NULL,
+ /* .ctx_allocated = */ NULL,
+ /* .ctx_unallocated = */ NULL,
+ /* .graph = */ NULL,
+ };
+ }
+
+ // dup nodes
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
+ }
+
+ // allocate nodes
+ ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
+ if (buffer == NULL) {
+ fprintf(stderr, "failed to allocate buffer for graph copy\n");
+ free(hash_set.keys);
+ free(node_copies);
+ free(node_init);
+ ggml_free(ctx_allocated);
+ ggml_free(ctx_unallocated);
+ return (struct ggml_backend_graph_copy) {
+ /* .buffer = */ NULL,
+ /* .ctx_allocated = */ NULL,
+ /* .ctx_unallocated = */ NULL,
+ /* .graph = */ NULL,
+ };
+ }
+
+ //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
+
+ // copy data and init views
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ graph_copy_init_tensor(hash_set, node_copies, node_init, node);
+ }
+
+ // build graph copy
+ struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
+ graph_copy->nodes[i] = node_copy;
+ }
+ graph_copy->n_nodes = graph->n_nodes;
+
+ free(hash_set.keys);
+ free(node_copies);
+ free(node_init);
+
+ return (struct ggml_backend_graph_copy) {
+ /* .buffer = */ buffer,
+ /* .ctx_allocated = */ ctx_allocated,
+ /* .ctx_unallocated = */ ctx_unallocated,
+ /* .graph = */ graph_copy,
+ };
+}
+
+void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
+ ggml_backend_buffer_free(copy.buffer);
+ ggml_free(copy.ctx_allocated);
+ ggml_free(copy.ctx_unallocated);
+}
+
+bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
+ struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
+ if (copy.buffer == NULL) {
+ return false;
+ }
+
+ struct ggml_cgraph * g1 = graph;
+ struct ggml_cgraph * g2 = copy.graph;
+
+ assert(g1->n_nodes == g2->n_nodes);
+
+ for (int i = 0; i < g1->n_nodes; i++) {
+ //printf("eval %d/%d\n", i, g1->n_nodes);
+ struct ggml_tensor * t1 = g1->nodes[i];
+ struct ggml_tensor * t2 = g2->nodes[i];
+
+ assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
+
+ struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
+ struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
+
+ ggml_backend_graph_compute(backend1, &g1v);
+ ggml_backend_graph_compute(backend2, &g2v);
+
+ if (ggml_is_view_op(t1->op)) {
+ continue;
+ }
+
+ // compare results, calculate rms etc
+ if (!callback(i, t1, t2, user_data)) {
+ break;
+ }
+ }
+
+ ggml_backend_graph_copy_free(copy);
+
+ return true;
+}