diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/src/ggml-cann/kernels/get_row_f16.cpp | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml-cann/kernels/get_row_f16.cpp')
-rw-r--r-- | ggml/src/ggml-cann/kernels/get_row_f16.cpp | 186 |
1 files changed, 186 insertions, 0 deletions
diff --git a/ggml/src/ggml-cann/kernels/get_row_f16.cpp b/ggml/src/ggml-cann/kernels/get_row_f16.cpp new file mode 100644 index 00000000..c704b5b2 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/get_row_f16.cpp @@ -0,0 +1,186 @@ +#include "kernel_operator.h" + +// optimize me. Use template to avoid copy code. +using namespace AscendC; + +#define BUFFER_NUM 2 + +class GET_ROW_F16 { + public: + __aicore__ inline GET_ROW_F16() {} + __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output, + int64_t *input_ne_ub, size_t *input_nb_ub, + int64_t *indices_ne_ub, size_t *indices_nb_ub, + int64_t *output_ne_ub, size_t *output_nb_ub) { + // TODO, use template for F16/f32 + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + for (int i = 0; i < 4; i++) { + input_ne[i] = input_ne_ub[i]; + input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; + + indices_ne[i] = indices_ne_ub[i]; + indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0]; + + output_ne[i] = output_ne_ub[i]; + output_stride[i] = output_nb_ub[i] / output_nb_ub[0]; + } + + // Indices has two dims. n_elements = all rows should get. + // dr, all rows should this thread get. + uint64_t n_elements = + indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3]; + dr = n_elements / op_block_num; + + uint64_t tails = n_elements % op_block_num; + if (op_block_idx < tails) { + dr += 1; + ir = dr * op_block_idx; + } else { + ir = dr * op_block_idx + tails; + } + + input_gm.SetGlobalBuffer((__gm__ half *)input); + indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices); + output_gm.SetGlobalBuffer((__gm__ float *)output); + + uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31) + & ~31); + uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31) + & ~31); + + local_buffer_elems = input_local_buffer_size / sizeof(half); + + // TODO, consider long row that can't put in UB. + // All data should asign to 32. It's ok because all data is align to 32. + pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size); + pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size); + } + + __aicore__ inline void copy_in(uint32_t offset, size_t len) { + LocalTensor<half> input_local = input_queue.AllocTensor<half>(); + size_t tail = len % 32; + len = len & ~31; + DataCopy(input_local, input_gm[offset], len); + if(tail != 0) { + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = tail * sizeof(half); + DataCopyPadExtParams<half> padParams; + DataCopyPad(input_local[len], input_gm[offset + len], + dataCopyParams, padParams); + } + input_queue.EnQue(input_local); + } + + __aicore__ inline void copy_out(uint32_t offset, size_t len) { + LocalTensor<float> output_local = output_queue.DeQue<float>(); + size_t tail = len % 32; + len = len & ~31; + DataCopy(output_gm[offset], output_local, len); + if(tail != 0) { + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = tail * sizeof(float); + DataCopyPad(output_gm[offset + len], output_local[len], + dataCopyParams); + } + output_queue.FreeTensor(output_local); + } + + __aicore__ inline void calculate_row(int64_t idx) { + const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]); + const int64_t indices_ne1_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) / + indices_ne[0]; + const int64_t indices_ne0_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] - + indices_ne1_idx * indices_ne[0]); + + const int64_t indices_offset = indices_ne0_idx * indices_stride[0] + + indices_ne1_idx * indices_stride[1] + + indices_ne2_idx * indices_stride[2]; + const int32_t selected_row_idx = indices_gm.GetValue(indices_offset); + + const int64_t input_offset = selected_row_idx * input_stride[1] + + indices_ne1_idx * input_stride[2] + + indices_ne2_idx * input_stride[3]; + + const int64_t output_offset = indices_ne0_idx * output_stride[1] + + indices_ne1_idx * output_stride[2] + + indices_ne2_idx * output_stride[3]; + + copy_in(input_offset, input_ne[0]); + LocalTensor<half> input_local = input_queue.DeQue<half>(); + LocalTensor<float> output_local = output_queue.AllocTensor<float>(); + + Cast(output_local, input_local, RoundMode::CAST_NONE, + local_buffer_elems); + output_queue.EnQue(output_local); + copy_out(output_offset, input_ne[0]); + + input_queue.FreeTensor(input_local); + } + + __aicore__ inline void calculate() { + for (int64_t i = ir; i < ir + dr; i++) { + calculate_row(i); + } + } + + private: + int64_t input_ne[4]; + size_t input_stride[4]; + + int64_t indices_ne[4]; + size_t indices_stride[4]; + + int64_t output_ne[4]; + size_t output_stride[4]; + + size_t local_buffer_elems; + + int64_t ir; + int64_t dr; + + TPipe pipe; + GlobalTensor<half> input_gm; + GlobalTensor<int32_t> indices_gm; + GlobalTensor<float> output_gm; + TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; +}; + +template <typename T> +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_get_row_f16( + GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm, + GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm, + GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t indices_ne_ub[4]; + size_t indices_nb_ub[4]; + int64_t output_ne_ub[4]; + size_t output_nb_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(indices_ne_gm, indices_ne_ub, 32); + copy_to_ub(indices_nb_gm, indices_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + copy_to_ub(output_nb_gm, output_nb_ub, 32); + + GET_ROW_F16 op; + op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub, + indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub); + op.calculate(); +} |