summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-cuda.cu
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-10-16 15:18:26 +0300
committerGitHub <noreply@github.com>2024-10-16 15:18:26 +0300
commit76b97c80645362ac65a2e33043fd8d46bdaf8c56 (patch)
treeb2b8ab9efb91a6ce4dd9d0fccbc9e11141ca1d80 /ggml/src/ggml-cuda.cu
parent993ca95e9e3108f0352fa2a3384cab0775c7f7c1 (diff)
Adding IQ4_KSS: 4.0 bpw quants (#89)
* iq4_kss: WIP * iq4_kss: CUDA dequantize works So we can run perplexity. Sadly, the result does not look good on the bpw vs quantization error plot. * iq4_kss: slightly better quantization * iq4_kss: another small quantization improvement * iq4_kss: CUDA works TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B. In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks. I.e., the reduced model size more than offsets the additional bit fiddling required for iq4_kss. * iq4_kss: new bit arrangement - CUDA and Zen4 work Did not lose performance on CUDA. Zen4 is decent, but not great: PP-512(LLaMA-3.1-8B) = 163 t/s. TG-128 is of course better than other 4-bit quants due to smaller model size. We get 14.5 t/s @ 8 threads. * iq4_kss: ARM_NEON. Predictably very slow * iq4_kss: Metal PP is not too bad - just 10% slower than q4_0. But TG is 30% slower, i.e., predictably bad. * iq4_kss: somewhat faster Metal dot product 45.75 t/s -> 48.75 t/s. Still 22% slower than q4_0 * iq4_kss: AVX2 Bad, but better than I expected. PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X. I.e., with 32 AVX2 threads we get the performance of 16 Zen4 threads. * iq4_kss: very slightly faster Metal dot product 48.7 t/s -> 49.3 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml-cuda.cu')
-rw-r--r--ggml/src/ggml-cuda.cu1
1 files changed, 1 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu
index 6648b7f8..e26f36a0 100644
--- a/ggml/src/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda.cu
@@ -2829,6 +2829,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
+ case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ3_K: