summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-cuda
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-10-16 15:18:26 +0300
committerGitHub <noreply@github.com>2024-10-16 15:18:26 +0300
commit76b97c80645362ac65a2e33043fd8d46bdaf8c56 (patch)
treeb2b8ab9efb91a6ce4dd9d0fccbc9e11141ca1d80 /ggml/src/ggml-cuda
parent993ca95e9e3108f0352fa2a3384cab0775c7f7c1 (diff)
Adding IQ4_KSS: 4.0 bpw quants (#89)
* iq4_kss: WIP * iq4_kss: CUDA dequantize works So we can run perplexity. Sadly, the result does not look good on the bpw vs quantization error plot. * iq4_kss: slightly better quantization * iq4_kss: another small quantization improvement * iq4_kss: CUDA works TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B. In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks. I.e., the reduced model size more than offsets the additional bit fiddling required for iq4_kss. * iq4_kss: new bit arrangement - CUDA and Zen4 work Did not lose performance on CUDA. Zen4 is decent, but not great: PP-512(LLaMA-3.1-8B) = 163 t/s. TG-128 is of course better than other 4-bit quants due to smaller model size. We get 14.5 t/s @ 8 threads. * iq4_kss: ARM_NEON. Predictably very slow * iq4_kss: Metal PP is not too bad - just 10% slower than q4_0. But TG is 30% slower, i.e., predictably bad. * iq4_kss: somewhat faster Metal dot product 45.75 t/s -> 48.75 t/s. Still 22% slower than q4_0 * iq4_kss: AVX2 Bad, but better than I expected. PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X. I.e., with 32 AVX2 threads we get the performance of 16 Zen4 threads. * iq4_kss: very slightly faster Metal dot product 48.7 t/s -> 49.3 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml-cuda')
-rw-r--r--ggml/src/ggml-cuda/common.cuh7
-rw-r--r--ggml/src/ggml-cuda/convert.cu43
-rw-r--r--ggml/src/ggml-cuda/iqk_mmvq.cu36
-rw-r--r--ggml/src/ggml-cuda/iqk_mmvq.cuh4
-rw-r--r--ggml/src/ggml-cuda/mmvq.cu3
5 files changed, 93 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
index a6a9c3d3..a5658a24 100644
--- a/ggml/src/ggml-cuda/common.cuh
+++ b/ggml/src/ggml-cuda/common.cuh
@@ -544,6 +544,13 @@ struct ggml_cuda_type_traits<GGML_TYPE_IQ4_KS> {
};
template<>
+struct ggml_cuda_type_traits<GGML_TYPE_IQ4_KSS> {
+ static constexpr int qk = QK_K;
+ static constexpr int qr = QR4_XS;
+ static constexpr int qi = QI4_XS;
+};
+
+template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ5_K> {
static constexpr int qk = QK_K;
static constexpr int qr = QR5_XS;
diff --git a/ggml/src/ggml-cuda/convert.cu b/ggml/src/ggml-cuda/convert.cu
index 1e4421b1..e9d15b5d 100644
--- a/ggml/src/ggml-cuda/convert.cu
+++ b/ggml/src/ggml-cuda/convert.cu
@@ -639,6 +639,37 @@ static __global__ void dequantize_block_iq4_ks(const void * __restrict__ vx, dst
}
template<typename dst_t>
+static __global__ void dequantize_block_iq4_kss(const void * __restrict__ vx, dst_t * __restrict__ yy, int64_t n_per_row, int64_t row_size) {
+
+ int64_t ii = blockIdx.x;
+ int64_t row = (QK_K * ii) / n_per_row;
+ const char * cx = (const char *)vx + row * row_size;
+ float scale = *(const float *)cx;
+ const block_iq4_kss * x = (const block_iq4_kss *)(cx + sizeof(float));
+ const int64_t i = ii - (row*n_per_row)/QK_K;
+
+ const int64_t tid = threadIdx.x;
+ const int64_t il = tid/8; // 0...3
+ const int64_t ib = tid%8; // 0...7
+ dst_t * y = yy + ii*QK_K + 32*ib + 4*il;
+ const uint32_t * q4 = x[i].qs + 4*ib;
+ uint32_t s32 = (q4[0] & 0x00010001) | ((q4[1] & 0x00010001) << 2) | ((q4[2] & 0x00010001) << 4) | ((q4[3] & 0x00010001) << 6);
+ uint8_t ls = (s32 | (s32 >> 15)) & 0xff;
+ const float d = scale * ((ls & 254) - 127);
+ const int8_t * values = iq4k_values + ((ls & 1) << 4);
+ uint32_t aux32[2];
+ aux32[0] = q4[il] & 0xfffefffe;
+ aux32[0] ^= (aux32[0] >> 1);
+ aux32[1] = ((aux32[0] >> 4) & 0x0f0f0f0f);
+ aux32[0] &= 0x0f0f0f0f;
+ const uint8_t * aux8 = (const uint8_t *)aux32;
+ for (int j = 0; j < 4; ++j) {
+ y[j+ 0] = d * values[aux8[j+0]];
+ y[j+16] = d * values[aux8[j+4]];
+ }
+}
+
+template<typename dst_t>
static __global__ void dequantize_block_iq4_k(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int64_t i = blockIdx.x;
const block_iq4_k * x = (const block_iq4_k *)vx;
@@ -981,6 +1012,14 @@ static void dequantize_row_iq4_ks_cuda(const void * vx, dst_t * y, const int64_t
}
template<typename dst_t>
+static void dequantize_row_iq4_kss_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) {
+ const int64_t k = nrows * n_per_row;
+ const int64_t row_size = ggml_row_size(GGML_TYPE_IQ4_KSS, n_per_row);
+ const int nb = (k + QK_K - 1) / QK_K;
+ dequantize_block_iq4_kss<<<nb, 32, 0, stream>>>(vx, y, n_per_row, row_size);
+}
+
+template<typename dst_t>
static void dequantize_row_iq2_ks_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) {
const int64_t k = nrows * n_per_row;
const int64_t row_size = ggml_row_size(GGML_TYPE_IQ2_KS, n_per_row);
@@ -1152,6 +1191,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
return dequantize_row_iq4_xs_cuda;
case GGML_TYPE_IQ4_KS:
return dequantize_row_iq4_ks_cuda;
+ case GGML_TYPE_IQ4_KSS:
+ return dequantize_row_iq4_kss_cuda;
case GGML_TYPE_IQ2_KS:
return dequantize_row_iq2_ks_cuda;
case GGML_TYPE_IQ2_K:
@@ -1225,6 +1266,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
return dequantize_row_iq4_xs_cuda;
case GGML_TYPE_IQ4_KS:
return dequantize_row_iq4_ks_cuda;
+ case GGML_TYPE_IQ4_KSS:
+ return dequantize_row_iq4_kss_cuda;
case GGML_TYPE_IQ2_KS:
return dequantize_row_iq2_ks_cuda;
case GGML_TYPE_IQ2_K:
diff --git a/ggml/src/ggml-cuda/iqk_mmvq.cu b/ggml/src/ggml-cuda/iqk_mmvq.cu
index 9ca219e4..dec54b5e 100644
--- a/ggml/src/ggml-cuda/iqk_mmvq.cu
+++ b/ggml/src/ggml-cuda/iqk_mmvq.cu
@@ -239,6 +239,35 @@ __device__ __forceinline__ float vec_dot_iq4_ks_q8_1(
return dl * __low2float(bq8_1[ib32].ds) * sumi;
}
+#define VDR_IQ4_KSS_Q8_1_MMVQ 4
+#define VDR_IQ4_KSS_Q8_1_MMQ 4
+
+__device__ __forceinline__ float vec_dot_iq4_kss_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
+
+ float scale = *(const float *)vbq;
+ const block_iq4_kss * bq4 = (const block_iq4_kss *)((const char *)vbq + sizeof(float)) + kbx;
+ const uint8_t * all_values = (const uint8_t *)iq4k_values;
+
+ // iqs is 0...28
+ const int ib32 = iqs/4; // Why iqs/4 ?
+ const int32_t * q8 = (const int *)bq8_1[ib32].qs;
+ const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
+ uint32_t s32 = (q4[0] & 0x00010001) | ((q4[1] & 0x00010001) << 2) | ((q4[2] & 0x00010001) << 4) | ((q4[3] & 0x00010001) << 6);
+ uint8_t ls = (s32 | (s32 >> 15)) & 0xff;
+ const float dl = scale * ((ls & 254) - 127);
+ int v1, v2;
+ int sumi = 0;
+ for (int j = 0; j < 4; ++j) {
+ uint32_t aux32 = q4[j] & 0xfffefffe;
+ aux32 ^= (aux32 >> 1);
+ get_int_from_table_16_shift(aux32, ls & 1, all_values, v1, v2);
+ sumi = ggml_cuda_dp4a(v1, q8[j+0], sumi);
+ sumi = ggml_cuda_dp4a(v2, q8[j+4], sumi);
+ }
+ return dl * __low2float(bq8_1[ib32].ds) * sumi;
+}
+
#define VDR_IQ5_K_Q8_1_MMVQ 4
#define VDR_IQ5_K_Q8_1_MMQ 4
@@ -703,6 +732,13 @@ void mul_mat_vec_iq4_ks_q8_1_cuda(
iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ4_KS, VDR_IQ4_KS_Q8_1_MMVQ, vec_dot_iq4_ks_q8_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
+void mul_mat_vec_iq4_kss_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ4_KSS, VDR_IQ4_KSS_Q8_1_MMVQ, vec_dot_iq4_kss_q8_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
void mul_mat_vec_iq2_ks_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
diff --git a/ggml/src/ggml-cuda/iqk_mmvq.cuh b/ggml/src/ggml-cuda/iqk_mmvq.cuh
index 3a93a1b6..0678c026 100644
--- a/ggml/src/ggml-cuda/iqk_mmvq.cuh
+++ b/ggml/src/ggml-cuda/iqk_mmvq.cuh
@@ -32,6 +32,10 @@ void mul_mat_vec_iq4_ks_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream);
+void mul_mat_vec_iq4_kss_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream);
+
void mul_mat_vec_iq2_ks_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream);
diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu
index e312b266..107caf45 100644
--- a/ggml/src/ggml-cuda/mmvq.cu
+++ b/ggml/src/ggml-cuda/mmvq.cu
@@ -462,6 +462,9 @@ void ggml_cuda_op_mul_mat_vec_q(
case GGML_TYPE_IQ4_KS:
mul_mat_vec_iq4_ks_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
+ case GGML_TYPE_IQ4_KSS:
+ mul_mat_vec_iq4_kss_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
case GGML_TYPE_IQ2_KS:
mul_mat_vec_iq2_ks_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;