diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/src/ggml-kompute.cpp | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml-kompute.cpp')
-rw-r--r-- | ggml/src/ggml-kompute.cpp | 2038 |
1 files changed, 2038 insertions, 0 deletions
diff --git a/ggml/src/ggml-kompute.cpp b/ggml/src/ggml-kompute.cpp new file mode 100644 index 00000000..ed5f2e34 --- /dev/null +++ b/ggml/src/ggml-kompute.cpp @@ -0,0 +1,2038 @@ +#include "ggml.h" +#include "ggml-backend.h" +#include "ggml-backend-impl.h" +#include "ggml-kompute.h" + +// These are generated at build time by cmake custom command +#include "shaderop_scale.h" +#include "shaderop_scale_8.h" +#include "shaderop_add.h" +#include "shaderop_addrow.h" +#include "shaderop_mul.h" +#include "shaderop_silu.h" +#include "shaderop_relu.h" +#include "shaderop_gelu.h" +#include "shaderop_softmax.h" +#include "shaderop_norm.h" +#include "shaderop_rmsnorm.h" +#include "shaderop_diagmask.h" +#include "shaderop_mul_mat_f16.h" +#include "shaderop_mul_mat_q8_0.h" +#include "shaderop_mul_mat_q4_0.h" +#include "shaderop_mul_mat_q4_1.h" +#include "shaderop_mul_mat_q6_k.h" +#include "shaderop_mul_mat_mat_f32.h" +#include "shaderop_getrows_f32.h" +#include "shaderop_getrows_f16.h" +#include "shaderop_getrows_q4_0.h" +#include "shaderop_getrows_q4_1.h" +#include "shaderop_getrows_q6_k.h" +#include "shaderop_rope_f16.h" +#include "shaderop_rope_f32.h" +#include "shaderop_cpy_f16_f16.h" +#include "shaderop_cpy_f16_f32.h" +#include "shaderop_cpy_f32_f16.h" +#include "shaderop_cpy_f32_f32.h" + +#include <algorithm> +#include <array> +#include <cassert> +#include <cstdint> +#include <cstdio> +#include <cstring> +#include <iostream> +#include <memory> +#include <stdexcept> +#include <string> +#include <unordered_map> +#include <utility> +#include <vector> + +#include <kompute/Kompute.hpp> +#include <vulkan/vulkan.hpp> + +#ifdef __linux__ +#include <cstdlib> // for setenv +#endif + +#define QK4_0 32 +#define QR4_0 2 +#define QK4_1 32 +#define QK_NL 16 + +typedef ggml_fp16_t half; + +static std::string ggml_kompute_format_name(int device) { + return "Kompute" + std::to_string(device); +} + +struct ggml_kompute_context { + int device; + std::string name; + std::shared_ptr<vk::DescriptorPool> pool; + + ggml_kompute_context(int device) + : device(device), name(ggml_kompute_format_name(device)) {} +}; + +// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object +// and consolidate the init functions and simplify object lifetime management. As it currently stands, +// we *have* to have the kompute manager no matter what for device discovery, but the kompute context +// is only created when a device is set and vulkan is explicitly turned on. +static ggml_kompute_context *s_kompute_context = nullptr; + +class kompute_manager { + kp::Manager *s_mgr = nullptr; + +public: + kp::Manager *operator()() { + if (s_mgr && !s_mgr->hasInstance()) { + destroy(); + } + if (!s_mgr) { + s_mgr = new kp::Manager; + } + return s_mgr; + } + + void destroy() { + delete s_mgr; + s_mgr = nullptr; + } +}; + +static kompute_manager komputeManager; + +struct ggml_vk_memory { + void *data = nullptr; + size_t size = 0; + vk::DeviceMemory *primaryMemory = nullptr; + vk::Buffer *primaryBuffer = nullptr; + vk::DeviceMemory *stagingMemory = nullptr; + vk::Buffer *stagingBuffer = nullptr; +}; + +#ifdef __linux__ +__attribute__((constructor)) +static void enable_sam() { + setenv("RADV_PERFTEST", "sam", false); +} +#endif + +static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) { + vk::PhysicalDeviceFeatures availableFeatures; + physical_device.getFeatures(&availableFeatures); + + if (!availableFeatures.shaderInt16) + return false; + + vk::PhysicalDeviceVulkan11Features availableFeatures11; + vk::PhysicalDeviceVulkan12Features availableFeatures12; + + availableFeatures11.pNext = &availableFeatures12; + availableFeatures12.pNext = nullptr; + + vk::PhysicalDeviceFeatures2 features2; + features2.pNext = &availableFeatures11; + + physical_device.getFeatures2(&features2); + + if (!availableFeatures11.uniformAndStorageBuffer16BitAccess || + !availableFeatures11.storageBuffer16BitAccess) { + return false; + } + + if (!availableFeatures12.storageBuffer8BitAccess || + !availableFeatures12.uniformAndStorageBuffer8BitAccess || + !availableFeatures12.shaderFloat16 || + !availableFeatures12.shaderInt8) { + return false; + } + + return true; +} + +static const char * ggml_vk_getVendorName(uint32_t vendorID) { + switch (vendorID) { + case 0x10DE: + return "nvidia"; + case 0x1002: + return "amd"; + case 0x8086: + return "intel"; + default: + return "unknown"; + } +} + +static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) { + std::vector<ggml_vk_device> results; + if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance()) + return results; + + std::vector<vk::PhysicalDevice> physical_devices; + try { + physical_devices = komputeManager()->listDevices(); + } catch (vk::SystemError & err) { + std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n"; + return results; + } + + uint32_t deviceCount = physical_devices.size(); + if (deviceCount == 0) + return results; + + std::unordered_map<std::string, size_t> count_by_name; + + for (uint32_t i = 0; i < deviceCount; i++) { + const auto & physical_device = physical_devices[i]; + + VkPhysicalDeviceProperties dev_props = physical_device.getProperties(); + VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties(); + const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion); + const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion); + if (major < 1 || minor < 2) + continue; + + if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device)) + continue; + + size_t heapSize = 0; + for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) { + VkMemoryHeap heap = memoryProperties.memoryHeaps[j]; + if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) { + heapSize = heap.size; + break; + } + } + + if (heapSize < memoryRequired) + continue; + + auto ext_props = physical_device.enumerateDeviceExtensionProperties(); + bool has_maintenance4 = false; + + // Check if maintenance4 is supported + for (const auto & properties : ext_props) { + if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) { + has_maintenance4 = true; + } + } + + vk::PhysicalDeviceSubgroupProperties subgroup_props; + vk::PhysicalDeviceProperties2 dev_props2; + vk::PhysicalDeviceMaintenance3Properties dev_props3; + vk::PhysicalDeviceMaintenance4Properties dev_props4; + dev_props2.pNext = &dev_props3; + dev_props3.pNext = &subgroup_props; + if (has_maintenance4) { + subgroup_props.pNext = &dev_props4; + } + physical_device.getProperties2(&dev_props2); + + if (subgroup_props.subgroupSize < 32) + continue; + + ggml_vk_device d; + d.index = i; + d.type = dev_props.deviceType; + d.heapSize = heapSize; + d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID)); + d.subgroupSize = subgroup_props.subgroupSize; + d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment; + + if (has_maintenance4) { + d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize); + } else { + d.maxAlloc = dev_props3.maxMemoryAllocationSize; + } + + std::string name(dev_props.deviceName); + size_t n_idx = ++count_by_name[name]; + if (n_idx > 1) { + name += " (" + std::to_string(n_idx) + ")"; + } + d.name = strdup(name.c_str()); + + results.push_back(d); + } + + std::stable_sort(results.begin(), results.end(), + [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool { + if (lhs.type != rhs.type) { + if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true; + if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false; + + if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true; + if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false; + } + return lhs.heapSize < rhs.heapSize; + } + ); + + return results; +} + +// public API returns a C-style array +ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) { + auto devices = ggml_vk_available_devices_internal(memoryRequired); + *count = devices.size(); + if (devices.empty()) { + return nullptr; + } + + size_t nbytes = sizeof (ggml_vk_device) * (devices.size()); + auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes)); + memcpy(arr, devices.data(), nbytes); + return arr; +} + +static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) { + devices.erase( + std::remove_if(devices.begin(), devices.end(), + [&targetVendor](const ggml_vk_device& device) { + return device.vendor != targetVendor; + }), + devices.end() + ); +} + +static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) { + devices.erase( + std::remove_if(devices.begin(), devices.end(), + [&targetName](const ggml_vk_device& device) { + return device.name != targetName; + }), + devices.end() + ); +} + +static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) { + if (name.empty()) + return false; + + auto devices = ggml_vk_available_devices_internal(memoryRequired); + if (name == "amd" || name == "nvidia" || name == "intel") { + ggml_vk_filterByVendor(devices, name); + } else if (name != "gpu") { + ggml_vk_filterByName(devices, name); + } + + if (devices.empty()) + return false; + + *device = devices.front(); + return true; +} + +bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) { + return ggml_vk_get_device(device, memoryRequired, std::string(name)); +} + +bool ggml_vk_has_vulkan() { + return komputeManager()->hasVulkan(); +} + +bool ggml_vk_has_device() { + return komputeManager()->hasDevice(); +} + +ggml_vk_device ggml_vk_current_device() { + if (!komputeManager()->hasDevice()) + return ggml_vk_device(); + + auto devices = ggml_vk_available_devices_internal(0); + ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data()); + GGML_ASSERT(!devices.empty()); + return devices.front(); +} + +static +void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) { + std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = { + vk::DescriptorPoolSize( + vk::DescriptorType::eStorageBuffer, + 3 * size // Descriptor count is number of possible tensors to pass into an algorithm + ) + }; + + vk::DescriptorPoolCreateInfo descriptorPoolInfo( + vk::DescriptorPoolCreateFlags(), + size, // Max sets + static_cast<uint32_t>(descriptorPoolSizes.size()), + descriptorPoolSizes.data()); + + ctx->pool = std::make_shared<vk::DescriptorPool>(); + vk::Result r = komputeManager()->device()->createDescriptorPool( + &descriptorPoolInfo, nullptr, ctx->pool.get()); + if (r != vk::Result::eSuccess) + std::cerr << "Error allocating descriptor pool" << vk::to_string(r); +} + +static +void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) { + if (ctx->pool) { + komputeManager()->device()->destroy( + *ctx->pool, + (vk::Optional<const vk::AllocationCallbacks>)nullptr); + ctx->pool = nullptr; + } +} + +static +vk::Buffer *ggml_vk_allocate_buffer(size_t size) { + vk::BufferCreateInfo bufferCreateInfo; + bufferCreateInfo.size = size; + bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer | + vk::BufferUsageFlagBits::eTransferSrc | + vk::BufferUsageFlagBits::eTransferDst; + bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive; + + vk::Buffer *vkBuffer = new vk::Buffer; + vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer); + if (r != vk::Result::eSuccess) + std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl; + return vkBuffer; +} + +static +vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) { + + uint32_t memoryTypeIndex = -1; + bool memoryTypeIndexFound = false; + vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties(); + for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { + const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i]; + const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex]; + if (memoryHeap.size < size) { + continue; + } + + if (requirements.memoryTypeBits & (1 << i)) { + if (((memoryProperties.memoryTypes[i]).propertyFlags & + flags) == flags) { + memoryTypeIndex = i; + memoryTypeIndexFound = true; + if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) { + *isHostVisible = true; + } + break; + } + } + } + if (!memoryTypeIndexFound) { + throw std::runtime_error( + "Memory type index for buffer creation not found"); + } + + vk::MemoryAllocateInfo allocInfo; + allocInfo.allocationSize = size; + allocInfo.memoryTypeIndex = memoryTypeIndex; + vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory; + vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory); + if (r != vk::Result::eSuccess) { + std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl; + throw std::runtime_error("Error allocating vulkan memory."); + } + return vkDeviceMemory; +} + +static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) { + size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer); + + // If offset is already aligned, return it directly + if (offset % minStorageBufferOffsetAlignment == 0) { + return offset; + } + + // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset + return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment; +} + +static ggml_vk_memory ggml_vk_allocate(size_t size) { + ggml_vk_memory memory; + bool isHostVisible = false; + { + memory.primaryBuffer = ggml_vk_allocate_buffer(size); + vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer); + vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal; + memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); + komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0); + if (isHostVisible) { + vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data); + if (r != vk::Result::eSuccess) + std::cerr << "Error mapping memory" << vk::to_string(r); + } + } + + if (!isHostVisible) { + memory.stagingBuffer = ggml_vk_allocate_buffer(size); + vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer); + vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible | + vk::MemoryPropertyFlagBits::eHostCoherent | + vk::MemoryPropertyFlagBits::eHostCached; + memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); + komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0); + vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data); + if (r != vk::Result::eSuccess) + std::cerr << "Error mapping memory" << vk::to_string(r); + } + + memory.size = size; + return memory; +} + +static void ggml_vk_free_memory(ggml_vk_memory &memory) +{ + komputeManager()->device()->destroy( + *memory.primaryBuffer, + (vk::Optional<const vk::AllocationCallbacks>)nullptr); + if (memory.stagingBuffer) { + komputeManager()->device()->destroy( + *memory.stagingBuffer, + (vk::Optional<const vk::AllocationCallbacks>)nullptr); + } + komputeManager()->device()->freeMemory( + *memory.primaryMemory, + (vk::Optional<const vk::AllocationCallbacks>)nullptr); + if (memory.stagingMemory) { + komputeManager()->device()->freeMemory( + *memory.stagingMemory, + (vk::Optional<const vk::AllocationCallbacks>)nullptr); + } +} + +static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft); + +static +ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) { + ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer; + + // compatibility with ggml-backend + GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name); + + ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context); + + const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data); + + GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size)); + + offset = uint64_t(ioffs); + return buf_ctx; +} + +static +const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) { + uint64_t originalOffset = 0; + auto * res = ggml_vk_find_tensor(t, originalOffset); + if (!res) { + static std::shared_ptr<kp::Tensor> nullTensor = nullptr; + return nullTensor; + } + + // Create a tensor whose memory will be composed of our buffers at the correct offset + const size_t nelements = ggml_nelements(t); + size_t nbytes = ggml_nbytes(t); + + size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset); + if (alignedOffset) { + *alignedOffset = originalOffset - vulkanOffset; + nbytes += *alignedOffset; + } + + return komputeManager()->tensor( + t->data, + nelements, + nbytes, kp::Tensor::TensorDataTypes::eFloat, + res->primaryMemory, res->primaryBuffer, + res->stagingMemory, res->stagingBuffer, + vulkanOffset); +} + +static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) { + if (size % sizeof(uint32_t) != 0) { + throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)"); + } + + const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData); + size_t count = size / sizeof(uint32_t); + return std::vector<uint32_t>(data_ptr, data_ptr + count); +} + +inline static +uint32_t safe_divide(uint32_t a, uint32_t b) { + if (b <= 1) { + return a; + } + if ((a % b) != 0) { + fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b); + GGML_ASSERT(!"safe_divide result would've had remainder"); + } + return a / b; +} + +static void ggml_vk_add( + kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, + int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, + int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, + int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, + int32_t ne0, + int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv, + kp::shader_data::op_add_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00; + int32_t nb00, nb01, nb02, nb03; + int32_t ne10, ne11, ne12, ne13; + int32_t nb10, nb11, nb12, nb13; + int32_t ne0; + int32_t nb0, nb1, nb2, nb3; + } const pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, + nb00, nb01, nb02, nb03, + ne10, ne11, ne12, ne13, + nb10, nb11, nb12, nb13, + ne0, + nb0, nb1, nb2, nb3 + }; + + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_addrow(kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + uint32_t size, uint32_t row = 0) { + + const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv, + kp::shader_data::op_addrow_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + uint32_t row; + } const pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + row + }; + + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) + s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); + else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({size}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_mul( + kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, + int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, + int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, + int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, + int32_t ne0, + int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv, + kp::shader_data::op_mul_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00; + int32_t nb00, nb01, nb02, nb03; + int32_t ne10, ne11, ne12, ne13; + int32_t nb10, nb11, nb12, nb13; + int32_t ne0; + int32_t nb0, nb1, nb2, nb3; + } const pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, + nb00, nb01, nb02, nb03, + ne10, ne11, ne12, ne13, + nb10, nb11, nb12, nb13, + ne0, + nb0, nb1, nb2, nb3 + }; + + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_scale(kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& in, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inOff, uint32_t outOff, + uint32_t size, float scale) { + const static auto spirv_1 = getSpirvShader( + kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len + ); + const static auto spirv_8 = getSpirvShader( + kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len + ); + + struct PushConstants { + uint32_t inOff, outOff; + float scale; + } const pushConsts { + safe_divide(inOff, 4), safe_divide(outOff, 4), + scale + }; + + const auto * spirv = &spirv_1; + std::string name(__func__); + if (size % 8 == 0) { + size /= 8; + name += "_8"; + spirv = &spirv_8; + } + + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({size}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_xxlu( + const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& in, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inOff, uint32_t outOff, + uint32_t size +) { + struct PushConstants { + uint32_t inOff, outOff; + } const pushConsts { + safe_divide(inOff, 4), safe_divide(outOff, 4), + }; + + auto name = std::string(__func__) + "_" + suffix; + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({size}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +template <typename... Args> +static void ggml_vk_silu(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv, + kp::shader_data::op_silu_comp_spv_len); + + ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_relu(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv, + kp::shader_data::op_relu_comp_spv_len); + + ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_gelu(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv, + kp::shader_data::op_gelu_comp_spv_len); + + ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...); +} + +static void ggml_vk_soft_max( + kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03, + float scale +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv, + kp::shader_data::op_softmax_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne01, ne02; + float scale; + int32_t mask; + } pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne01, ne02, + scale, + bool(inB) + }; + + auto & inB_ = inB ? inB : inA; + + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device + const uint32_t local_x = 32; + s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB_, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_norm_( + const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& in, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inOff, uint32_t outOff, + int32_t ne00, int32_t nb01, + int32_t nrows, float epsilon +) { + GGML_ASSERT(nb01%sizeof(float) == 0); + GGML_ASSERT(ne00%sizeof(float) == 0); + + struct PushConstants { + uint32_t inOff, outOff; + uint32_t ne00, nb01; + float eps; + } pushConsts { + safe_divide(inOff, 4), safe_divide(outOff, 4), + (uint32_t)ne00, (uint32_t)nb01, epsilon + }; + + auto name = std::string(__func__) + "_" + suffix; + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({(uint32_t)nrows}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +template <typename... Args> +static void ggml_vk_norm(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv, + kp::shader_data::op_norm_comp_spv_len); + + ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_rms_norm(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv, + kp::shader_data::op_rmsnorm_comp_spv_len); + + ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...); +} + +static void ggml_vk_diag_mask_inf(kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& in, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inOff, uint32_t outOff, + uint32_t n_past, + int32_t ne00, int32_t ne01, int32_t ne02) { + const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv, + kp::shader_data::op_diagmask_comp_spv_len); + + struct PushConstants { + uint32_t inOff, outOff; + uint32_t n_past; + int32_t ne00, ne01; + } pushConsts { + safe_divide(inOff, 4), safe_divide(outOff, 4), + n_past, + ne00, ne01 + }; + + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) + s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts}); + else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_mul_mat_f16( + kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, + uint32_t nb00, uint32_t nb01, uint32_t nb02, + int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, + uint32_t nb10, uint32_t nb11, uint32_t nb12, + int32_t ne0, int32_t ne1, + uint32_t r2, uint32_t r3 +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv, + kp::shader_data::op_mul_mat_f16_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne01, ne02; + uint32_t nb00, nb01, nb02; + int32_t ne10, ne11, ne12; + uint32_t nb10, nb11, nb12; + int32_t ne0, ne1; + uint32_t r2, r3; + } pushConsts { + safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne01, ne02, + nb00, nb01, nb02, + ne10, ne11, ne12, + nb10, nb11, nb12, + ne0, ne1, + r2, r3 + }; + + const unsigned ny = unsigned((ne11 + 4 - 1)/4); + + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; + s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, + uint32_t nb01, uint32_t nb02, + int32_t ne11, int32_t ne12, + uint32_t nb11, uint32_t nb12, + uint32_t nb1, uint32_t nb2) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv, + kp::shader_data::op_mul_mat_mat_f32_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne01, ne02, ne11, ne12; + uint32_t nb01, nb02; + uint32_t nb11, nb12; + uint32_t nb1, nb2; + } pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne01, ne02, ne11, ne12, + nb01, nb02, nb11, nb12, + nb1, nb2 + }; + + const uint32_t local_x = ggml_vk_current_device().subgroupSize; + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), + {inA, inB, out}, spirv, + {unsigned(ne01), + unsigned(ne11), + unsigned(std::max(ne12, ne02)) + }, + {local_x}, + {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), + unsigned(ne11), + unsigned(std::max(ne12, ne02)), + }); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_mul_mat_impl( + const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, + int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, + int32_t ne0, int32_t ne1, + uint32_t r2, uint32_t r3 +) { + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne01, ne02; + int32_t ne10, ne12; + int32_t ne0, ne1; + uint32_t r2, r3; + } pushConsts { + safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne01, ne02, + ne10, ne12, + ne0, ne1, + r2, r3 + }; + + auto name = std::string(__func__) + "_" + suffix; + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; + s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +template <typename... Args> +static void ggml_vk_mul_mat_q4_0(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv, + kp::shader_data::op_mul_mat_q4_0_comp_spv_len); + + ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_mul_mat_q4_1(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv, + kp::shader_data::op_mul_mat_q4_1_comp_spv_len); + + ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_mul_mat_q8_0(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv, + kp::shader_data::op_mul_mat_q8_0_comp_spv_len); + + ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...); +} + +static void ggml_vk_mul_mat_q6_k( + kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1, + int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02 +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv, + kp::shader_data::op_mul_mat_q6_k_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne10, ne0, ne1, ne01, gqa; + } pushConsts { + inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne10, ne0, ne1, ne01, ne12/ne02 + }; + + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; + s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_get_rows( + const std::vector<uint32_t>& spirv, + const char * suffix, + unsigned element_size, unsigned qk, + kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t nb01, int32_t nb1, + uint32_t size +) { + GGML_ASSERT(nb01%element_size == 0); + GGML_ASSERT(nb1%sizeof(float) == 0); + if (qk) GGML_ASSERT(ne00%qk == 0); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, nb01, nb1; + } pushConsts { + safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, nb01, nb1 + }; + + auto name = std::string(__func__) + "_" + suffix; + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({size}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +template <typename... Args> +static void ggml_vk_get_rows_f32(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv, + kp::shader_data::op_getrows_f32_comp_spv_len); + + ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_get_rows_f16(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv, + kp::shader_data::op_getrows_f16_comp_spv_len); + + ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_get_rows_q4_0(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv, + kp::shader_data::op_getrows_q4_0_comp_spv_len); + + ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_get_rows_q4_1(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv, + kp::shader_data::op_getrows_q4_1_comp_spv_len); + + ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_get_rows_q6_k(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv, + kp::shader_data::op_getrows_q6_k_comp_spv_len); + ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...); +} + +static void ggml_vk_rope( + kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& inA, + const std::shared_ptr<kp::Tensor>& inB, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig, + float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow, + int32_t ne01, int32_t ne02, int32_t ne03, + uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, + int32_t ne0, + uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 +) { + GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32); + + static const auto spirv_f16 = getSpirvShader( + kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len + ); + static const auto spirv_f32 = getSpirvShader( + kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len + ); + + int type_size = src0t == GGML_TYPE_F16 ? 2 : 4; + + GGML_ASSERT(nb03 % type_size == 0); + GGML_ASSERT(nb02 % type_size == 0); + GGML_ASSERT(nb01 % type_size == 0); + GGML_ASSERT(nb00 % type_size == 0); + GGML_ASSERT(nb3 % type_size == 0); + GGML_ASSERT(nb2 % type_size == 0); + GGML_ASSERT(nb1 % type_size == 0); + GGML_ASSERT(nb0 % type_size == 0); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t n_dims, mode, n_ctx_orig; + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + uint32_t nb00, nb01, nb02, nb03; + int32_t ne0; + uint32_t nb0, nb1, nb2, nb3; + } pushConsts { + safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size), + n_dims, mode, n_ctx_orig, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, + nb00, nb01, nb02, nb03, + ne0, + nb0, nb1, nb2, nb3 + }; + + auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32"); + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm<float, PushConstants>( + name, s_kompute_context->pool.get(), {inA, inB, out}, + src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32, + {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts} + ); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +static void ggml_vk_cpy( + const std::vector<uint32_t>& spirv, + uint32_t in_element_size, uint32_t out_element_size, + kp::Sequence& seq, + const std::shared_ptr<kp::Tensor>& in, + const std::shared_ptr<kp::Tensor>& out, + uint32_t inOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, + uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, + int32_t ne0, int32_t ne1, int32_t ne2, + uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 +) { + struct PushConstants { + uint32_t inOff, outOff; + int32_t ne00, ne01, ne02; + uint32_t nb00, nb01, nb02, nb03; + int32_t ne0, ne1, ne2; + uint32_t nb0, nb1, nb2, nb3; + } pushConsts { + safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size), + ne00, ne01, ne02, + nb00, nb01, nb02, nb03, + ne0, ne1, ne2, + nb0, nb1, nb2, nb3 + }; + + std::string name = std::string(__func__) + + "_i_" + std::to_string(in_element_size) + + "_o_" + std::to_string(out_element_size); + std::shared_ptr<kp::Algorithm> s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) + s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); + else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants<PushConstants>({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record<kp::OpAlgoDispatch>(s_algo); +} + +template <typename... Args> +static void ggml_vk_cpy_f32_f16(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv, + kp::shader_data::op_cpy_f32_f16_comp_spv_len); + ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_cpy_f32_f32(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv, + kp::shader_data::op_cpy_f32_f32_comp_spv_len); + ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_cpy_f16_f16(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv, + kp::shader_data::op_cpy_f16_f16_comp_spv_len); + ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...); +} + +template <typename... Args> +static void ggml_vk_cpy_f16_f32(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv, + kp::shader_data::op_cpy_f16_f32_comp_spv_len); + ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...); +} + +static bool ggml_vk_supports_op(const struct ggml_tensor * op) { + switch (op->type) { + case GGML_TYPE_F16: + case GGML_TYPE_F32: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + break; + default: + return false; + } + + switch (op->op) { + case GGML_OP_UNARY: + switch (ggml_get_unary_op(op)) { + case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_SILU: + return ggml_is_contiguous(op->src[0]); + default: + ; + } + break; + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + case GGML_OP_ADD: + case GGML_OP_MUL: + case GGML_OP_SCALE: + case GGML_OP_SOFT_MAX: + case GGML_OP_RMS_NORM: + case GGML_OP_NORM: + case GGML_OP_ROPE: + return true; + case GGML_OP_DUP: + case GGML_OP_CPY: + case GGML_OP_CONT: + switch (op->src[0]->type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + break; + default: + return false; + } + switch (op->type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + break; + default: + return false; + } + return true; + case GGML_OP_DIAG_MASK_INF: + return op->ne[3] == 1; + case GGML_OP_GET_ROWS: + switch (op->src[0]->type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q6_K: + return op->ne[2] == 1 && op->ne[3] == 1; + default: + ; + } + return false; + case GGML_OP_MUL_MAT: + if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1])) + return false; + + switch (op->src[0]->type) { + case GGML_TYPE_F32: + case GGML_TYPE_Q6_K: + return op->ne[3] == 1; + case GGML_TYPE_F16: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + return true; + default: + ; + } + default: + ; + } + return false; +} + +static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) { + const int n_seq = 8; + + // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting + // it to the size of the graph, but I think it can be made smaller? + ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes); + + std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq); + + for (auto& sequence : sequences) { + sequence = komputeManager()->sequence(); + } + for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) { + const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq; + + auto& seq = *sequences[seq_idx]; + + const int node_start = (seq_idx + 0) * n_nodes_per_seq; + const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes); + + bool any_commands_recorded = false; + + for (int i = node_start; i < node_end; ++i) { + struct ggml_tensor * src0 = gf->nodes[i]->src[0]; + struct ggml_tensor * src1 = gf->nodes[i]->src[1]; + struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2); + struct ggml_tensor * dst = gf->nodes[i]; + GGML_ASSERT(dst->data != nullptr); + + if (ggml_is_empty(dst)) { + continue; + } + + switch (dst->op) { + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + continue; // noop -> next node + default: + break; + } + + any_commands_recorded = true; + + if (!ggml_vk_supports_op(dst)) { + fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); + GGML_ASSERT(!"unsupported op"); + } + + const int32_t ne00 = src0 ? src0->ne[0] : 0; + const int32_t ne01 = src0 ? src0->ne[1] : 0; + const int32_t ne02 = src0 ? src0->ne[2] : 0; + const int32_t ne03 = src0 ? src0->ne[3] : 0; + + const uint32_t nb00 = src0 ? src0->nb[0] : 0; + const uint32_t nb01 = src0 ? src0->nb[1] : 0; + const uint32_t nb02 = src0 ? src0->nb[2] : 0; + const uint32_t nb03 = src0 ? src0->nb[3] : 0; + + const int32_t ne10 = src1 ? src1->ne[0] : 0; + const int32_t ne11 = src1 ? src1->ne[1] : 0; + const int32_t ne12 = src1 ? src1->ne[2] : 0; + const int32_t ne13 = src1 ? src1->ne[3] : 0; + + const uint32_t nb10 = src1 ? src1->nb[0] : 0; + const uint32_t nb11 = src1 ? src1->nb[1] : 0; + const uint32_t nb12 = src1 ? src1->nb[2] : 0; + const uint32_t nb13 = src1 ? src1->nb[3] : 0; + + const int32_t ne0 = dst ? dst->ne[0] : 0; + const int32_t ne1 = dst ? dst->ne[1] : 0; + const int32_t ne2 = dst ? dst->ne[2] : 0; +// const int32_t ne3 = dst ? dst->ne[3] : 0; + + const uint32_t nb0 = dst ? dst->nb[0] : 0; + const uint32_t nb1 = dst ? dst->nb[1] : 0; + const uint32_t nb2 = dst ? dst->nb[2] : 0; + const uint32_t nb3 = dst ? dst->nb[3] : 0; + + const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; + const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; + const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; + + const static std::shared_ptr<kp::Tensor> nullTensor = nullptr; + uint32_t off_src0 = 0; + uint32_t off_src1 = 0; + uint32_t off_dst = 0; + const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor; + const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor; + const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor; + + switch (dst->op) { + case GGML_OP_ADD: + { + if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { + // src1 is a row + ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00); + } else { + ggml_vk_add( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne03, + nb00, nb01, nb02, nb03, + ne10, ne11, ne12, ne13, + nb10, nb11, nb12, nb13, + ne0, + nb0, nb1, nb2, nb3 + ); + } + } break; + case GGML_OP_MUL: + { + ggml_vk_mul( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne03, + nb00, nb01, nb02, nb03, + ne10, ne11, ne12, ne13, + nb10, nb11, nb12, nb13, + ne0, + nb0, nb1, nb2, nb3 + ); + } break; + case GGML_OP_SCALE: + { + float scale; memcpy(&scale, dst->op_params, sizeof(float)); + + ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale); + } break; + case GGML_OP_UNARY: + { + int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); + switch (ggml_get_unary_op(gf->nodes[i])) { + case GGML_UNARY_OP_SILU: + { + ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4); + } break; + case GGML_UNARY_OP_RELU: + { + ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4); + } break; + case GGML_UNARY_OP_GELU: + { + GGML_ASSERT(n % 8 == 0); + ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8); + } break; + default: + { + fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + GGML_ASSERT(false); + } + } + } break; + case GGML_OP_SOFT_MAX: + { + float scale; + float max_bias; + + memcpy(&scale, (float *)dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float)); + +#pragma message("TODO: add ggml_vk_soft_max() F16 src1 support") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") + GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32); + +#pragma message("TODO: add ALiBi support") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192") + GGML_ASSERT(max_bias == 0.0f); + + ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale); + } break; + case GGML_OP_DIAG_MASK_INF: + { + const int n_past = ((int32_t *)(dst->op_params))[0]; + ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02); + } break; + case GGML_OP_NORM: + { + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); + } break; + case GGML_OP_RMS_NORM: + { + GGML_ASSERT(ne00 % 4 == 0); + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); + } break; + case GGML_OP_MUL_MAT: + { + GGML_ASSERT(ne00 == ne10); + + GGML_ASSERT(ne12 % ne02 == 0); + GGML_ASSERT(ne13 % ne03 == 0); + + const uint32_t r2 = ne12/ne02; + const uint32_t r3 = ne13/ne03; + + if (src1t != GGML_TYPE_F32) { + fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); + goto not_implemented; + } + + if (ggml_is_transposed(src0) || + ggml_is_transposed(src1)) { + fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); + goto not_implemented; + } + + switch (src0t) { + case GGML_TYPE_F32: + ggml_vk_mul_mat_mat_f32( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2 + ); + break; + case GGML_TYPE_F16: + ggml_vk_mul_mat_f16( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12, + ne0, ne1, r2, r3 + ); + break; + case GGML_TYPE_Q8_0: + ggml_vk_mul_mat_q8_0( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 + ); + break; + case GGML_TYPE_Q4_0: + ggml_vk_mul_mat_q4_0( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 + ); + break; + case GGML_TYPE_Q4_1: + ggml_vk_mul_mat_q4_1( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 + ); + break; + case GGML_TYPE_Q6_K: + ggml_vk_mul_mat_q6_k( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02 + ); + break; + default: { + fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); + goto not_implemented; + } + } + + } break; + case GGML_OP_GET_ROWS: + { + if (src0t == GGML_TYPE_F32) { + ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); + } else if (src0t == GGML_TYPE_F16) { + ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); + } else if (src0t == GGML_TYPE_Q4_0) { + ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); + } else if (src0t == GGML_TYPE_Q4_1) { + ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); + } else if (src0t == GGML_TYPE_Q6_K) { + ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); + } else { + fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t); + goto not_implemented; + } + } break; + case GGML_OP_ROPE: + { +#pragma message("TODO: implement phi3 frequency factors support") +#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225") + GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet"); + +#pragma message("TODO: update rope NORM mode to match NEOX mode") +#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634") + + GGML_ASSERT(ne10 == ne02); + GGML_ASSERT(src0t == dstt); + // const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan + const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; + + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + ggml_vk_rope( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_ctx_orig, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, + ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3 + ); + } break; + case GGML_OP_DUP: + case GGML_OP_CPY: + case GGML_OP_CONT: + { + switch (src0t) { + case GGML_TYPE_F32: + { + switch (dstt) { + case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; + case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; + default: goto not_implemented; + } + } break; + case GGML_TYPE_F16: + { + switch (dstt) { + case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; + case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; + default: goto not_implemented; + } break; + default: goto not_implemented; + } + } + } break; + default: goto not_implemented; + } + continue; + not_implemented: {} + fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + //GGML_ASSERT(false); + } + + // Evaluate sequence + if (any_commands_recorded) { + seq.evalAsync(); + } + } + + // Wait for all sequences to finish + for (auto& sequence : sequences) { + if (sequence->isRunning()) + sequence->evalAwait(); + } + + ggml_vk_free_descriptor_pool(ctx); +} + +template<> +kp::Tensor::TensorDataTypes +kp::TensorT<half>::dataType() +{ + return TensorDataTypes::eFloat; +} + +template<> +kp::Tensor::TensorDataTypes +kp::TensorT<uint8_t>::dataType() +{ + return TensorDataTypes::eUnsignedInt; +} + +//////////////////////////////////////////////////////////////////////////////// + +// backend interface + +struct ggml_backend_kompute_buffer_type_context { + int device; + int device_ref = 0; + uint64_t buffer_alignment; + uint64_t max_alloc; + std::string name; + + ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc) + : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {} +}; + +static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); + + if (!ctx->device_ref) { + komputeManager()->initializeDevice( + ctx->device, {}, { + "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage", + "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info" + } + ); + } + + assert(ggml_vk_has_device()); + ctx->device_ref++; +} + +static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); + + assert(ctx->device_ref > 0); + + ctx->device_ref--; + + if (!ctx->device_ref) { + komputeManager.destroy(); + } +} + +static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) { + auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context); + return ctx->name.c_str(); +} + +static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) { + auto * memory = (ggml_vk_memory *)buffer->context; + if (ggml_vk_has_device()) { + ggml_vk_free_memory(*memory); + } + delete memory; +} + +static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) { + return ((ggml_vk_memory *)buffer->context)->data; +} + +static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_UNUSED(buffer); + + const auto res = ggml_vk_get_tensor(tensor); + GGML_ASSERT(res); + + memcpy((char *)tensor->data + offset, data, size); + + komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res}); +} + +static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_UNUSED(buffer); + + const auto res = ggml_vk_get_tensor(tensor); + GGML_ASSERT(res); + + komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res}); + + memcpy(data, (const char *)tensor->data + offset, size); +} + +static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + auto * memory = (ggml_vk_memory *)buffer->context; + memset(memory->data, value, buffer->size); + + if (memory->stagingBuffer) + komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size); +} + +static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = { + /* .get_name = */ ggml_backend_kompute_buffer_get_name, + /* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer, + /* .get_base = */ ggml_backend_kompute_buffer_get_base, + /* .init_tensor = */ NULL, + /* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor, + /* .cpy_tensor = */ NULL, + /* .clear = */ ggml_backend_kompute_buffer_clear, + /* .reset = */ NULL, +}; + +// default buffer type + +static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); + return ctx->name.c_str(); +} + +static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + ggml_backend_kompute_device_ref(buft); + auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size)); + return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size); +} + +static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); + return ctx->buffer_alignment; +} + +static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); + return ctx->max_alloc; +} + +static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = { + /* .get_name = */ ggml_backend_kompute_buffer_type_get_name, + /* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment, + /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .is_host = */ NULL, +}; + +ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) { + static std::vector<ggml_backend_buffer_type> bufts = []() { + std::vector<ggml_backend_buffer_type> vec; + auto devices = ggml_vk_available_devices_internal(0); + vec.reserve(devices.size()); + + for (const auto & dev : devices) { + vec.push_back({ + /* .iface = */ ggml_backend_kompute_buffer_type_interface, + /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc) + }); + } + return vec; + }(); + + auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) { + return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device; + }); + return it < bufts.end() ? &*it : nullptr; +} + +// backend + +static const char * ggml_backend_kompute_name(ggml_backend_t backend) { + auto * ctx = static_cast<ggml_kompute_context *>(backend->context); + return ctx->name.c_str(); +} + +static void ggml_backend_kompute_free(ggml_backend_t backend) { + auto * ctx = static_cast<ggml_kompute_context *>(backend->context); + + assert(ctx == s_kompute_context); + s_kompute_context = nullptr; + if (ctx != nullptr) { + delete ctx; + } + + delete backend; +} + +static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) { + auto * ctx = static_cast<ggml_kompute_context *>(backend->context); + return ggml_backend_kompute_buffer_type(ctx->device); +} + +static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + auto * ctx = static_cast<ggml_kompute_context *>(backend->context); + ggml_vk_graph_compute(ctx, cgraph); + return GGML_STATUS_SUCCESS; +} + +static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + GGML_UNUSED(backend); + return ggml_vk_supports_op(op); +} + +static bool ggml_backend_kompute_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { + GGML_UNUSED(backend); + return buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name; +} + +static struct ggml_backend_i kompute_backend_i = { + /* .get_name = */ ggml_backend_kompute_name, + /* .free = */ ggml_backend_kompute_free, + /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type, + /* .set_tensor_async = */ NULL, + /* .get_tensor_async = */ NULL, + /* .cpy_tensor_async = */ NULL, + /* .synchronize = */ NULL, + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_update = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_kompute_graph_compute, + /* .supports_op = */ ggml_backend_kompute_supports_op, + /* .supports_buft = */ ggml_backend_kompute_supports_buft, + /* .offload_op = */ NULL, + /* .event_new = */ NULL, + /* .event_free = */ NULL, + /* .event_record = */ NULL, + /* .event_wait = */ NULL, + /* .event_synchronize = */ NULL, +}; + +static ggml_guid_t ggml_backend_kompute_guid() { + static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca }; + return &guid; +} + +ggml_backend_t ggml_backend_kompute_init(int device) { + GGML_ASSERT(s_kompute_context == nullptr); + s_kompute_context = new ggml_kompute_context(device); + + ggml_backend_t kompute_backend = new ggml_backend { + /* .guid = */ ggml_backend_kompute_guid(), + /* .interface = */ kompute_backend_i, + /* .context = */ s_kompute_context, + }; + + return kompute_backend; +} + +bool ggml_backend_is_kompute(ggml_backend_t backend) { + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid()); +} + +static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) { + GGML_UNUSED(params); + return ggml_backend_kompute_init(intptr_t(user_data)); +} + +extern "C" int ggml_backend_kompute_reg_devices(); + +int ggml_backend_kompute_reg_devices() { + auto devices = ggml_vk_available_devices_internal(0); + for (const auto & device : devices) { + ggml_backend_register( + ggml_kompute_format_name(device.index).c_str(), + ggml_backend_reg_kompute_init, + ggml_backend_kompute_buffer_type(device.index), + reinterpret_cast<void *>(intptr_t(device.index)) + ); + } + return devices.size(); +} |