summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-quants.c
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-02 07:25:39 +0100
committerGitHub <noreply@github.com>2024-12-02 07:25:39 +0100
commit6d0462d4a39085a9f9da04e0a5fc7cc9d4578818 (patch)
treeb7fd71bda09bb8e2315feff8b6128ad0b7cbefc7 /ggml/src/ggml-quants.c
parent8ad84b9fab9570c36220cb791f9a67a4d2c7fd2f (diff)
IQ4_NL_X4 (#118)
* Adding iq4_nl_x4 Looks very promising - I get PP-512(LLaMA-3.1-8B) = 230 t/s on the Ryzen-7950X! This is faster than any other quant and ~40% faster than iq4_nl. * iq4_nl_x4: getting amazing This Zen4 variant gets us to PP-512(LLaMA-3.1-8B) = 263 t/s! * iq4_nl_x4: AVX2 Here we gain only 25% compared to iq4_nl * iq4_nl_x4: NEON On M2-Max we get PP-512(LLaMA-3.1-8B) = 109.7 t/s, up from 82.4 t/s for iq4_nl. * iq4_nl_x4: minor NEON improvement and cleanup This gets us to 110.3 t/s. In comparison, IQ4_NL_4_4 in mainline llama.cpp achieves 92.3 t/s. * iq4_nl_x4: NEON specialization for matrix x vector --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml-quants.c')
-rw-r--r--ggml/src/ggml-quants.c1
1 files changed, 1 insertions, 0 deletions
diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c
index d18b1981..376c97f8 100644
--- a/ggml/src/ggml-quants.c
+++ b/ggml/src/ggml-quants.c
@@ -15196,6 +15196,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
case GGML_TYPE_IQ6_K: break;
case GGML_TYPE_IQ4_KS: break;
case GGML_TYPE_IQ4_KSS: break;
+ case GGML_TYPE_IQ4_NL_X4: break;
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
{