summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-sycl.cpp
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/src/ggml-sycl.cpp
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml-sycl.cpp')
-rw-r--r--ggml/src/ggml-sycl.cpp5314
1 files changed, 5314 insertions, 0 deletions
diff --git a/ggml/src/ggml-sycl.cpp b/ggml/src/ggml-sycl.cpp
new file mode 100644
index 00000000..36518ff9
--- /dev/null
+++ b/ggml/src/ggml-sycl.cpp
@@ -0,0 +1,5314 @@
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#include <algorithm>
+#include <assert.h>
+#include <atomic>
+#include <cinttypes>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+#include <float.h>
+#include <limits>
+#include <stdint.h>
+#include <stdio.h>
+#include <vector>
+#include <cmath>
+#include <iostream>
+#include <fstream>
+#include <stdio.h>
+#include <stdlib.h>
+#include <regex>
+
+#include <sycl/sycl.hpp>
+#include <sycl/half_type.hpp>
+
+#include "ggml-sycl.h"
+#include "ggml.h"
+#include "ggml-backend-impl.h"
+
+#include "ggml-sycl/backend.hpp"
+#include "ggml-sycl/presets.hpp"
+
+bool ggml_sycl_loaded(void);
+void ggml_sycl_free_data(struct ggml_tensor * tensor);
+void ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
+void ggml_sycl_set_main_device(int main_device);
+void ggml_sycl_set_mul_mat_q(bool mul_mat_q);
+void ggml_sycl_get_device_description(int device, char * description, size_t description_size);
+bool ggml_backend_is_sycl(ggml_backend_t backend);
+int ggml_backend_sycl_get_device(ggml_backend_t backend);
+static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer);
+static inline int get_sycl_env(const char *env_name, int default_val);
+
+
+void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
+ const void *ptr_src, size_t size) {
+ char *host_buf = (char *)malloc(size);
+ q_src.memcpy(host_buf, (const char *)ptr_src, size).wait();
+ q_dst.memcpy((char *)ptr_dst, host_buf, size).wait();
+ free(host_buf);
+}
+
+typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
+typedef void (*ggml_sycl_func_t)(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
+typedef void (*ggml_sycl_op_mul_mat_t)(
+ ggml_backend_sycl_context & ctx,
+ const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+ const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
+ float *dst_dd_i, const int64_t row_low, const int64_t row_high,
+ const int64_t src1_ncols, const int64_t src1_padded_row_size,
+ const queue_ptr &stream);
+typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream);
+
+static __dpct_inline__ float op_repeat(const float a, const float b) {
+ return b;
+ GGML_UNUSED(a);
+}
+
+static __dpct_inline__ float op_add(const float a, const float b) {
+ return a + b;
+}
+
+static __dpct_inline__ float op_mul(const float a, const float b) {
+ return a * b;
+}
+
+static __dpct_inline__ float op_div(const float a, const float b) {
+ return a / b;
+}
+
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
+ int ne0, int ne1, int ne2, int ne3,
+ int ne10, int ne11, int ne12, int ne13,
+ /*int s0, */ int s1, int s2, int s3,
+ /*int s10,*/ int s11, int s12, int s13,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+ const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
+ const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+ item_ct1.get_local_id(0)) /
+ ne3;
+ const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+ item_ct1.get_local_id(0)) %
+ ne3;
+
+ if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+ return;
+ }
+
+ const int i11 = i1 % ne11;
+ const int i12 = i2 % ne12;
+ const int i13 = i3 % ne13;
+
+ const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+ const size_t i_dst = i_src0;
+
+ const src0_t * src0_row = src0 + i_src0;
+ const src1_t * src1_row = src1 + i_src1;
+ dst_t * dst_row = dst + i_dst;
+
+ for (int i0 = i0s; i0 < ne0;
+ i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
+ const int i10 = i0 % ne10;
+ dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+ }
+}
+
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
+ int ne0, int ne1, int ne2, int ne3,
+ int ne10, int ne11, int ne12, int ne13,
+ /*int s0, */ int s1, int s2, int s3,
+ /*int s10,*/ int s11, int s12, int s13,
+ const sycl::nd_item<3> &item_ct1) {
+
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ const int i3 = i/(ne2*ne1*ne0);
+ const int i2 = (i/(ne1*ne0)) % ne2;
+ const int i1 = (i/ne0) % ne1;
+ const int i0 = i % ne0;
+
+ if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+ return;
+ }
+
+ const int i11 = i1 % ne11;
+ const int i12 = i2 % ne12;
+ const int i13 = i3 % ne13;
+
+ const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+ const size_t i_dst = i_src0;
+
+ const src0_t * src0_row = src0 + i_src0;
+ const src1_t * src1_row = src1 + i_src1;
+ dst_t * dst_row = dst + i_dst;
+
+ const int i10 = i0 % ne10;
+ dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+}
+
+static void acc_f32(const float * x, const float * y, float * dst, const int ne,
+ const int ne10, const int ne11, const int ne12,
+ const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+ if (i >= ne) {
+ return;
+ }
+ int src1_idx = i - offset;
+ int oz = src1_idx / nb2;
+ int oy = (src1_idx - (oz * nb2)) / nb1;
+ int ox = src1_idx % nb1;
+ if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
+ dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
+ } else {
+ dst[i] = x[i];
+ }
+}
+
+static void gelu_f32(const float * x, float * dst, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const float GELU_COEF_A = 0.044715f;
+ const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i >= k) {
+ return;
+ }
+
+ float xi = x[i];
+ dst[i] = 0.5f * xi *
+ (1.0f +
+ sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
+}
+
+static void silu_f32(const float * x, float * dst, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
+}
+
+static void gelu_quick_f32(const float *x, float *dst, int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const float GELU_QUICK_COEF = -1.702f;
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
+}
+
+static void tanh_f32(const float *x, float *dst, int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+ if (i >= k) {
+ return;
+ }
+ dst[i] = sycl::tanh((float)(x[i]));
+}
+
+static void relu_f32(const float * x, float * dst, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = sycl::fmax((float)(x[i]), (float)0);
+}
+
+static void hardsigmoid_f32(const float * x, float * dst, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
+}
+
+static void hardswish_f32(const float * x, float * dst, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
+}
+
+static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+ if (i >= k) {
+ return;
+ }
+ dst[i] = sycl::fmax((float)(x[i]), (float)0) +
+ sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
+}
+
+static void sqr_f32(const float * x, float * dst, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * x[i];
+}
+
+static void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
+ const int nb02, const int nb03, const int ne10, const int ne11,
+ const int ne12, const int ne13, const float sf0, const float sf1,
+ const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
+ int index = item_ct1.get_local_id(0) +
+ item_ct1.get_group(0) * item_ct1.get_local_range(0);
+ if (index >= ne10 * ne11 * ne12 * ne13) {
+ return;
+ }
+ // operation
+ int i10 = index % ne10;
+ int i11 = (index / ne10) % ne11;
+ int i12 = (index / (ne10 * ne11)) % ne12;
+ int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
+
+ int i00 = i10 / sf0;
+ int i01 = i11 / sf1;
+ int i02 = i12 / sf2;
+ int i03 = i13 / sf3;
+
+ dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
+}
+
+static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
+ const sycl::nd_item<3> &item_ct1) {
+ int nidx = item_ct1.get_local_id(2) +
+ item_ct1.get_group(2) * item_ct1.get_local_range(2);
+ if (nidx >= ne0) {
+ return;
+ }
+
+ // operation
+ int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
+ item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
+ if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
+ item_ct1.get_group(0) < ne02) {
+ int offset_src = nidx + item_ct1.get_group(1) * ne00 +
+ item_ct1.get_group(0) * ne00 * ne01;
+ dst[offset_dst] = x[offset_src];
+ } else {
+ dst[offset_dst] = 0.0f;
+ }
+}
+
+template<int QUANT_BLOCK_TILE>
+static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
+ const sycl::nd_item<3> &item_ct1) {
+ const int ix = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2)) * QUANT_BLOCK_TILE;
+
+ if (ix >= kx_padded) {
+ return;
+ }
+
+ const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+
+ const int i_padded = iy*kx_padded + ix;
+
+ block_q8_1 * y = (block_q8_1 *) vy;
+
+ const int ib = i_padded / QK8_1; // block index
+ const int iqs = i_padded % QK8_1; // quant index
+ typedef sycl::vec<float, QUANT_BLOCK_TILE> TC;
+ typedef sycl::vec<int8_t, QUANT_BLOCK_TILE> TQ;
+ TC zeros;
+ TQ qzeros;
+#pragma unroll
+ for (int i = 0; i < QUANT_BLOCK_TILE; i++)
+ {
+ zeros[i] = 0.f;
+ qzeros[i] = 0;
+ }
+ const TC xi = ix < kx ? *(TC *)&x[iy * kx + ix] : zeros;
+ float sum = xi[0];
+ float amax = sycl::fabs(xi[0]);
+#pragma unroll
+ for (int i = 1; i < QUANT_BLOCK_TILE; i++)
+ {
+ sum += xi[i];
+ amax = sycl::fmax(sycl::fabs(xi[i]), amax);
+ }
+ sum = warp_reduce_sum(sum, item_ct1);
+ amax = warp_reduce_max(amax, item_ct1);
+
+ const float d = amax / 127;
+ TQ q = qzeros;
+ if (amax != 0.0f)
+ {
+#pragma unroll
+ for (int i = 0; i < QUANT_BLOCK_TILE; i++) {
+ q[i] = sycl::round(xi[i] / d);
+ }
+ }
+
+ *(TQ *)&y[ib].qs[iqs] = q;
+
+ if (iqs > 0) {
+ return;
+ }
+
+ reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
+ reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
+}
+
+template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static void k_get_rows(
+ const void * src0, const int32_t * src1, dst_t * dst,
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+ size_t s10, size_t s11, size_t s12,
+ const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
+
+ const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
+ item_ct1.get_local_id(2)) *
+ 2;
+ const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+ const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+ item_ct1.get_local_id(0)) /
+ ne12;
+ const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+ item_ct1.get_local_id(0)) %
+ ne12;
+
+ if (i00 >= ne00) {
+ return;
+ }
+
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+ const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
+
+ const int ib = i00/qk; // block index
+ const int iqs = (i00%qk)/qr; // quant index
+ const int iybs = i00 - i00%qk; // dst block start index
+ const int y_offset = qr == 1 ? 1 : qk/2;
+
+ // dequantize
+ dfloat2 v;
+ dequantize_kernel(src0_row, ib, iqs, v);
+
+ dst_row[iybs + iqs + 0] = v.x();
+ dst_row[iybs + iqs + y_offset] = v.y();
+}
+
+template<typename src0_t, typename dst_t>
+static void k_get_rows_float(
+ const src0_t * src0, const int32_t * src1, dst_t * dst,
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+ size_t s10, size_t s11, size_t s12,
+ const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
+
+ const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
+ item_ct1.get_local_id(2);
+ const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+ const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+ item_ct1.get_local_id(0)) /
+ ne12;
+ const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+ item_ct1.get_local_id(0)) %
+ ne12;
+
+ if (i00 >= ne00) {
+ return;
+ }
+
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+ const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
+
+ dst_row[i00] = src0_row[i00];
+}
+
+static void mul_mat_p021_f16_f32(
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
+ const sycl::nd_item<3> &item_ct1) {
+
+ const sycl::half *x = (const sycl::half *)vx;
+
+ const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+ const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+ item_ct1.get_local_id(0);
+ const int channel_x = channel / (nchannels_y / nchannels_x);
+
+ const int nrows_y = ncols_x;
+ const int nrows_dst = nrows_x;
+ const int row_dst = row_x;
+
+ float tmp = 0.0f;
+
+ for (int col_x0 = 0; col_x0 < ncols_x;
+ col_x0 += item_ct1.get_local_range(2)) {
+ const int col_x = col_x0 + item_ct1.get_local_id(2);
+
+ if (col_x >= ncols_x) {
+ break;
+ }
+
+ // x is transposed and permuted
+ const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
+ const float xi =
+ sycl::vec<sycl::half, 1>(x[ix])
+ .convert<float, sycl::rounding_mode::automatic>()[0];
+
+ const int row_y = col_x;
+
+
+ // y is not transposed but permuted
+ const int iy = channel*nrows_y + row_y;
+
+ tmp += xi * y[iy];
+ }
+
+ // dst is not transposed and not permuted
+ const int idst = channel*nrows_dst + row_dst;
+
+ // sum up partial sums and write back result
+#pragma unroll
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ tmp +=
+ dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+ }
+
+ if (item_ct1.get_local_id(2) == 0) {
+ dst[idst] = tmp;
+ }
+}
+
+static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
+ const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
+ const sycl::nd_item<3> &item_ct1) {
+
+ const sycl::half *x = (const sycl::half *)vx;
+
+ const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+ const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+ item_ct1.get_local_id(0);
+ const int channel_x = channel / channel_x_divisor;
+
+ const int nrows_y = ncols_x;
+ const int nrows_dst = nrows_x;
+ const int row_dst = row_x;
+
+ const int idst = channel*nrows_dst + row_dst;
+
+ float tmp = 0.0f;
+
+ for (int col_x0 = 0; col_x0 < ncols_x;
+ col_x0 += item_ct1.get_local_range(2)) {
+ const int col_x = col_x0 + item_ct1.get_local_id(2);
+
+ if (col_x >= ncols_x) {
+ break;
+ }
+
+ const int row_y = col_x;
+
+ const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
+ const int iy = channel*nrows_y + row_y;
+
+ const float xi =
+ sycl::vec<sycl::half, 1>(x[ix])
+ .convert<float, sycl::rounding_mode::automatic>()[0];
+
+ tmp += xi * y[iy];
+ }
+
+ // sum up partial sums and write back result
+#pragma unroll
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ tmp +=
+ dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+ }
+
+ if (item_ct1.get_local_id(2) == 0) {
+ dst[idst] = tmp;
+ }
+}
+
+static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ float * dsti = (float *) cdsti;
+
+ *dsti = *xi;
+}
+
+static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ sycl::half *dsti = (sycl::half *)cdsti;
+
+ *dsti = sycl::vec<float, 1>(*xi)
+ .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
+}
+
+static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
+ const sycl::half *xi = (const sycl::half *)cxi;
+ sycl::half *dsti = (sycl::half *)cdsti;
+
+ *dsti = *xi;
+}
+
+static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
+ const sycl::half *xi = (const sycl::half *)cxi;
+ float * dsti = (float *) cdsti;
+
+ *dsti = *xi;
+}
+
+static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
+ const int16_t *xi = (const int16_t *)cxi;
+ int16_t *dsti = (int16_t *)cdsti;
+
+ *dsti = *xi;
+}
+
+static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
+ const int32_t *xi = (const int32_t *)cxi;
+ int32_t *dsti = (int32_t *)cdsti;
+
+ *dsti = *xi;
+}
+
+template <cpy_kernel_t cpy_1>
+static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+ const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i >= ne) {
+ return;
+ }
+
+ // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
+ // then combine those indices with the corresponding byte offsets to get the total offsets
+ const int i03 = i/(ne00 * ne01 * ne02);
+ const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+ const int i13 = i/(ne10 * ne11 * ne12);
+ const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
+
+ cpy_1(cx + x_offset, cdst + dst_offset);
+}
+
+static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q8_0 * dsti = (block_q8_0 *) cdsti;
+
+ float amax = 0.0f; // absolute max
+
+ for (int j = 0; j < QK8_0; j++) {
+ const float v = xi[j];
+ amax = sycl::fmax(amax, sycl::fabs((float)v));
+ }
+
+ const float d = amax / ((1 << 7) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dsti->d = d;
+
+ for (int j = 0; j < QK8_0; ++j) {
+ const float x0 = xi[j]*id;
+
+ dsti->qs[j] = sycl::round((float)x0);
+ }
+}
+
+static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q4_0 * dsti = (block_q4_0 *) cdsti;
+
+ float amax = 0.0f;
+ float vmax = 0.0f;
+
+ for (int j = 0; j < QK4_0; ++j) {
+ const float v = xi[j];
+ if (amax < sycl::fabs((float)v)) {
+ amax = sycl::fabs((float)v);
+ vmax = v;
+ }
+ }
+
+ const float d = vmax / -8;
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dsti->d = d;
+
+ for (int j = 0; j < QK4_0/2; ++j) {
+ const float x0 = xi[0 + j]*id;
+ const float x1 = xi[QK4_0/2 + j]*id;
+
+ const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
+ const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
+
+ dsti->qs[j] = xi0;
+ dsti->qs[j] |= xi1 << 4;
+ }
+}
+
+static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q4_1 * dsti = (block_q4_1 *) cdsti;
+
+ float vmin = FLT_MAX;
+ float vmax = -FLT_MAX;
+
+ for (int j = 0; j < QK4_1; ++j) {
+ const float v = xi[j];
+
+ if (v < vmin) vmin = v;
+ if (v > vmax) vmax = v;
+ }
+
+ const float d = (vmax - vmin) / ((1 << 4) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dsti->dm.x() = d;
+ dsti->dm.y() = vmin;
+
+ for (int j = 0; j < QK4_1/2; ++j) {
+ const float x0 = (xi[0 + j] - vmin)*id;
+ const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
+
+ const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
+ const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
+
+ dsti->qs[j] = xi0;
+ dsti->qs[j] |= xi1 << 4;
+ }
+}
+
+template <cpy_kernel_t cpy_blck, int qk>
+static void cpy_f32_q(const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+ const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
+ const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2)) *
+ qk;
+
+ if (i >= ne) {
+ return;
+ }
+
+ const int i03 = i/(ne00 * ne01 * ne02);
+ const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+ const int i13 = i/(ne10 * ne11 * ne12);
+ const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
+
+ cpy_blck(cx + x_offset, cdst + dst_offset);
+}
+
+static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
+ const sycl::nd_item<3> &item_ct1) {
+ const int row = item_ct1.get_group(1);
+ const int col = item_ct1.get_local_id(2);
+
+ float sum = 0.0f;
+ for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
+ sum += x[row * ncols + i];
+ }
+
+ sum = warp_reduce_sum(sum, item_ct1);
+
+ if (col == 0) {
+ dst[row] = sum;
+ }
+}
+
+
+template<typename T>
+static inline void ggml_sycl_swap(T & a, T & b) {
+ T tmp = a;
+ a = b;
+ b = tmp;
+}
+
+template <ggml_sort_order order>
+__dpct_inline__ static void
+k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
+ const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
+ // bitonic sort
+ int col = item_ct1.get_local_id(2);
+ int row = item_ct1.get_group(1);
+
+ if (col >= ncols_pad) {
+ return;
+ }
+
+ const float * x_row = x + row * ncols;
+ auto dst_row = (int *)dpct_local;
+
+ // initialize indices
+ dst_row[col] = col;
+
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ for (int k = 2; k <= ncols_pad; k *= 2) {
+ for (int j = k / 2; j > 0; j /= 2) {
+ int ixj = col ^ j;
+ if (ixj > col) {
+ if ((col & k) == 0) {
+ if (dst_row[col] >= ncols ||
+ (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
+ x_row[dst_row[col]] > x_row[dst_row[ixj]] :
+ x_row[dst_row[col]] < x_row[dst_row[ixj]]))
+ ) {
+ ggml_sycl_swap(dst_row[col], dst_row[ixj]);
+ }
+ } else {
+ if (dst_row[ixj] >= ncols ||
+ (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
+ x_row[dst_row[col]] < x_row[dst_row[ixj]] :
+ x_row[dst_row[col]] > x_row[dst_row[ixj]]))
+ ) {
+ ggml_sycl_swap(dst_row[col], dst_row[ixj]);
+ }
+ }
+ }
+ /*
+ DPCT1118:1: SYCL group functions and algorithms must be encountered
+ in converged control flow. You may need to adjust the code.
+ */
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ }
+ }
+
+ // copy the result to dst without the padding
+ if (col < ncols) {
+ dst[row * ncols + col] = dst_row[col];
+ }
+}
+
+
+static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
+ const sycl::nd_item<3> &item_ct1) {
+ const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (col >= ncols) {
+ return;
+ }
+
+ const int i = row*ncols + col;
+ //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
+ //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
+ dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
+}
+
+static void scale_f32(const float * x, float * dst, const float scale, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i >= k) {
+ return;
+ }
+
+ dst[i] = scale * x[i];
+}
+
+static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i >= k) {
+ return;
+ }
+
+ dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
+}
+
+template <typename T>
+static void im2col_kernel(const float *x, T *dst, int offset_delta,
+ int IW, int IH, int OW, int KW, int KH,
+ int pelements, int CHW, int s0, int s1, int p0,
+ int p1, int d0, int d1,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_id(2) +
+ item_ct1.get_group(2) * item_ct1.get_local_range(2);
+ if (i >= pelements) {
+ return;
+ }
+
+ const int ksize = OW * (KH > 1 ? KW : 1);
+ const int kx = i / ksize;
+ const int kd = kx * ksize;
+ const int ky = (i - kd) / OW;
+ const int ix = i % OW;
+
+ const int64_t iiw = ix * s0 + kx * d0 - p0;
+ const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
+
+ const int64_t offset_dst =
+ (item_ct1.get_group(1) * OW + ix) * CHW +
+ (item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst[offset_dst] =
+ sycl::vec<float, 1>(0.0f)
+ .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
+ } else {
+ const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
+ dst[offset_dst] =
+ sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
+ .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
+ }
+}
+
+template <typename Ti, typename To>
+static void pool2d_nchw_kernel(
+ const int ih, const int iw, const int oh, const int ow,
+ const int kh, const int kw, const int sh, const int sw,
+ const int ph, const int pw, const int parallel_elements,
+ const Ti* src, To* dst, const enum ggml_op_pool op,
+ const sycl::nd_item<3> &item_ct1) {
+ int idx = item_ct1.get_local_id(2) +
+ item_ct1.get_group(2) * item_ct1.get_local_range(2);
+ if (idx >= parallel_elements) {
+ return;
+ }
+
+ const int I_HW = ih * iw;
+ const int O_HW = oh * ow;
+ const int nc = idx / O_HW;
+ const int cur_oh = idx % O_HW / ow;
+ const int cur_ow = idx % O_HW % ow;
+ const Ti* i_ptr = src + nc * I_HW;
+ To* o_ptr = dst + nc * O_HW;
+ const int start_h = cur_oh * sh - ph;
+ const int bh = sycl::max(0, start_h);
+ const int eh = sycl::min(ih, start_h + kh);
+ const int start_w = cur_ow * sw - pw;
+ const int bw = sycl::max(0, start_w);
+ const int ew = sycl::min(iw, start_w + kw);
+
+ To res = 0;
+
+ switch (op) {
+ case GGML_OP_POOL_AVG: res = 0; break;
+ case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
+ }
+
+ for (int i = bh; i < eh; i += 1) {
+ for (int j = bw; j < ew; j += 1) {
+#if DPCT_COMPATIBILITY_TEMP >= 350
+ /*
+ DPCT1098:106: The '*' expression is used instead of the __ldg
+ call. These two expressions do not provide the exact same
+ functionality. Check the generated code for potential precision
+ and/or performance issues.
+ */
+ Ti cur = *(i_ptr + i * iw + j);
+#else
+ Ti cur = i_ptr[i * iw + j];
+#endif
+ switch (op) {
+ case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break;
+ case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break;
+ }
+ }
+ }
+ o_ptr[cur_oh * ow + cur_ow] = res;
+}
+
+template <int qk, int qr, dequantize_kernel_t dq>
+static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const void *src0_dd,
+ const int32_t *src1_dd, float *dst_dd,
+ queue_ptr stream) {
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
+ const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
+ const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
+
+ // strides in elements
+ //const size_t s0 = nb0 / ggml_element_size(dst);
+ const size_t s1 = nb1 / ggml_element_size(dst);
+ const size_t s2 = nb2 / ggml_element_size(dst);
+ const size_t s3 = nb3 / ggml_element_size(dst);
+
+ const size_t s10 = nb10 / ggml_element_size(src1);
+ const size_t s11 = nb11 / ggml_element_size(src1);
+ const size_t s12 = nb12 / ggml_element_size(src1);
+ //const size_t s13 = nb13 / ggml_element_size(src1);
+
+ GGML_ASSERT(ne00 % 2 == 0);
+
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_get_rows<qk, qr, dq>(
+ src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
+ s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
+ });
+
+ (void) dst;
+}
+
+template <typename src0_t>
+static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const src0_t *src0_dd, const int32_t *src1_dd,
+ float *dst_dd, queue_ptr stream) {
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
+ const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
+ const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
+
+ // strides in elements
+ //const size_t s0 = nb0 / ggml_element_size(dst);
+ const size_t s1 = nb1 / ggml_element_size(dst);
+ const size_t s2 = nb2 / ggml_element_size(dst);
+ const size_t s3 = nb3 / ggml_element_size(dst);
+
+ const size_t s10 = nb10 / ggml_element_size(src1);
+ const size_t s11 = nb11 / ggml_element_size(src1);
+ const size_t s12 = nb12 / ggml_element_size(src1);
+ //const size_t s13 = nb13 / ggml_element_size(src1);
+
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
+ s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
+ });
+ }
+
+ (void) dst;
+}
+
+template<float (*bin_op)(const float, const float)>
+struct bin_bcast_sycl {
+ template <typename src0_t, typename src1_t, typename dst_t>
+ void operator()(ggml_backend_sycl_context & ctx,
+ const struct ggml_tensor *src0,
+ const struct ggml_tensor *src1, struct ggml_tensor *dst,
+ const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
+ queue_ptr stream) {
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ int nr0 = ne10/ne0;
+ int nr1 = ne11/ne1;
+ int nr2 = ne12/ne2;
+ int nr3 = ne13/ne3;
+
+ int nr[4] = { nr0, nr1, nr2, nr3 };
+
+ // collapse dimensions until first broadcast dimension
+ int64_t cne0[] = {ne0, ne1, ne2, ne3};
+ int64_t cne1[] = {ne10, ne11, ne12, ne13};
+ size_t cnb0[] = {nb0, nb1, nb2, nb3};
+ size_t cnb1[] = {nb10, nb11, nb12, nb13};
+ auto collapse = [](int64_t cne[]) {
+ cne[0] *= cne[1];
+ cne[1] = cne[2];
+ cne[2] = cne[3];
+ cne[3] = 1;
+ };
+
+ auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
+ cnb[1] *= cne[1];
+ cnb[2] *= cne[2];
+ cnb[3] *= cne[3];
+ };
+
+ for (int i = 0; i < 4; i++) {
+ if (nr[i] != 1) {
+ break;
+ }
+ if (i > 0) {
+ collapse_nb(cnb0, cne0);
+ collapse_nb(cnb1, cne1);
+ collapse(cne0);
+ collapse(cne1);
+ }
+ }
+ {
+ int64_t ne0 = cne0[0];
+ int64_t ne1 = cne0[1];
+ int64_t ne2 = cne0[2];
+ int64_t ne3 = cne0[3];
+
+ int64_t ne10 = cne1[0];
+ int64_t ne11 = cne1[1];
+ int64_t ne12 = cne1[2];
+ int64_t ne13 = cne1[3];
+
+ size_t nb0 = cnb0[0];
+ size_t nb1 = cnb0[1];
+ size_t nb2 = cnb0[2];
+ size_t nb3 = cnb0[3];
+
+ size_t nb10 = cnb1[0];
+ size_t nb11 = cnb1[1];
+ size_t nb12 = cnb1[2];
+ size_t nb13 = cnb1[3];
+
+ size_t s0 = nb0 / sizeof(dst_t);
+ size_t s1 = nb1 / sizeof(dst_t);
+ size_t s2 = nb2 / sizeof(dst_t);
+ size_t s3 = nb3 / sizeof(dst_t);
+
+ size_t s10 = nb10 / sizeof(src1_t);
+ size_t s11 = nb11 / sizeof(src1_t);
+ size_t s12 = nb12 / sizeof(src1_t);
+ size_t s13 = nb13 / sizeof(src1_t);
+
+ GGML_ASSERT(s0 == 1);
+ GGML_ASSERT(s10 == 1);
+
+ const int block_size = 128;
+
+ int64_t hne0 = std::max(ne0/2LL, 1LL);
+
+ sycl::range<3> block_dims(1, 1, 1);
+ block_dims[2] = std::min<unsigned int>(hne0, block_size);
+ block_dims[1] = std::min<unsigned int>(
+ ne1, block_size / (unsigned int)block_dims[2]);
+ block_dims[0] = std::min(
+ std::min<unsigned int>(
+ ne2 * ne3, block_size / (unsigned int)block_dims[2] /
+ (unsigned int)block_dims[1]),
+ 64U);
+
+ sycl::range<3> block_nums(
+ (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
+ (ne1 + block_dims[1] - 1) / block_dims[1],
+ (hne0 + block_dims[2] - 1) / block_dims[2]);
+
+ if (block_nums[0] > 65535) {
+ // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
+ int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
+ sycl::range<3>(1, 1, block_size),
+ sycl::range<3>(1, 1, block_size)),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_bin_bcast_unravel<bin_op>(
+ src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
+ ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
+ s13, item_ct1);
+ });
+ }
+ } else {
+ /*
+ DPCT1049:16: The work-group size passed to the SYCL kernel may
+ exceed the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if
+ needed.
+ */
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
+ ne2, ne3, ne10, ne11, ne12, ne13,
+ s1, s2, s3, s11, s12, s13,
+ item_ct1);
+ });
+ }
+ }
+ }
+};
+
+static void acc_f32_sycl(const float *x, const float *y, float *dst,
+ const int n_elements, const int ne10, const int ne11,
+ const int ne12, const int nb1, const int nb2,
+ const int offset, queue_ptr stream) {
+ int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
+ item_ct1);
+ });
+}
+
+static void gelu_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ gelu_f32(x, dst, k, item_ct1);
+ });
+}
+
+static void silu_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ silu_f32(x, dst, k, item_ct1);
+ });
+}
+
+static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ gelu_quick_f32(x, dst, k, item_ct1);
+ });
+}
+
+static void tanh_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ tanh_f32(x, dst, k, item_ct1);
+ });
+}
+
+static void relu_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ relu_f32(x, dst, k, item_ct1);
+ });
+}
+
+static void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ hardsigmoid_f32(x, dst, k, item_ct1);
+ });
+}
+
+static void hardswish_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ hardswish_f32(x, dst, k, item_ct1);
+ });
+}
+
+static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
+ const float negative_slope,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
+ });
+}
+
+static void sqr_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ sqr_f32(x, dst, k, item_ct1);
+ });
+}
+
+static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
+ const int nb02, const int nb03, const int ne10, const int ne11,
+ const int ne12, const int ne13, const float sf0, const float sf1,
+ const float sf2, const float sf3, queue_ptr stream) {
+ int dst_size = ne10 * ne11 * ne12 * ne13;
+ int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
+ sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
+ stream->parallel_for(
+ sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)),
+ [=](sycl::nd_item<1> item_ct1) {
+ upscale_f32(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
+ });
+}
+
+static void pad_f32_sycl(const float *x, float *dst, const int ne00,
+ const int ne01, const int ne02, const int ne0,
+ const int ne1, const int ne2, queue_ptr stream) {
+ int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
+ sycl::range<3> gridDim(ne2, ne1, num_blocks);
+ stream->parallel_for(
+ sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
+ });
+}
+
+static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
+ const int ky, const int kx_padded,
+ queue_ptr stream) {
+ const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
+ const sycl::range<3> num_blocks(1, ky, block_num_x);
+ int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
+ static_assert(QK8_1 % WARP_SIZE == 0);
+ const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(num_blocks * block_size, block_size),
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
+ });
+ }
+}
+
+static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
+ float *dst, const int ncols_x,
+ const int nrows_x,
+ const int nchannels_x,
+ const int nchannels_y,
+ queue_ptr stream) {
+
+ const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
+ nchannels_y, item_ct1);
+ });
+ }
+}
+
+static void ggml_mul_mat_vec_nc_f16_f32_sycl(
+ const void *vx, const float *y, float *dst, const int ncols_x,
+ const int nrows_x, const int row_stride_x, const int nchannels_x,
+ const int nchannels_y, const int channel_stride_x, queue_ptr stream) {
+
+ const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
+ row_stride_x, channel_stride_x,
+ nchannels_y / nchannels_x, item_ct1);
+ });
+ }
+}
+
+static void
+ggml_cpy_f16_f32_sycl(const char *cx, char *cdst, const int ne, const int ne00,
+ const int ne01, const int ne02, const int nb00,
+ const int nb01, const int nb02, const int nb03,
+ const int ne10, const int ne11, const int ne12,
+ const int nb10, const int nb11, const int nb12,
+ const int nb13, queue_ptr stream) {
+
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ cpy_f32_f16<cpy_1_f16_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00,
+ nb01, nb02, nb03, ne10, ne11, ne12,
+ nb10, nb11, nb12, nb13, item_ct1);
+ });
+ }
+}
+
+static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
+ const int ne00, const int ne01,
+ const int ne02, const int nb00,
+ const int nb01, const int nb02,
+ const int nb03, const int ne10,
+ const int ne11, const int ne12,
+ const int nb10, const int nb11,
+ const int nb12, const int nb13,
+ queue_ptr stream) {
+
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+ item_ct1);
+ });
+ }
+}
+
+static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
+ const int ne00, const int ne01,
+ const int ne02, const int nb00,
+ const int nb01, const int nb02,
+ const int nb03, const int ne10,
+ const int ne11, const int ne12,
+ const int nb10, const int nb11,
+ const int nb12, const int nb13,
+ queue_ptr stream) {
+
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+ item_ct1);
+ });
+ }
+}
+
+static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
+ const int ne00, const int ne01,
+ const int ne02, const int nb00,
+ const int nb01, const int nb02,
+ const int nb03, const int ne10,
+ const int ne11, const int ne12,
+ const int nb10, const int nb11,
+ const int nb12, const int nb13,
+ queue_ptr stream) {
+
+ GGML_ASSERT(ne % QK8_0 == 0);
+ const int num_blocks = ne / QK8_0;
+ stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
+ sycl::range<3>(1, 1, 1)),
+ [=](sycl::nd_item<3> item_ct1) {
+ cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
+ cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+ item_ct1);
+ });
+}
+
+static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
+ const int ne00, const int ne01,
+ const int ne02, const int nb00,
+ const int nb01, const int nb02,
+ const int nb03, const int ne10,
+ const int ne11, const int ne12,
+ const int nb10, const int nb11,
+ const int nb12, const int nb13,
+ queue_ptr stream) {
+
+ GGML_ASSERT(ne % QK4_0 == 0);
+ const int num_blocks = ne / QK4_0;
+ stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
+ sycl::range<3>(1, 1, 1)),
+ [=](sycl::nd_item<3> item_ct1) {
+ cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
+ cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+ item_ct1);
+ });
+}
+
+static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
+ const int ne00, const int ne01,
+ const int ne02, const int nb00,
+ const int nb01, const int nb02,
+ const int nb03, const int ne10,
+ const int ne11, const int ne12,
+ const int nb10, const int nb11,
+ const int nb12, const int nb13,
+ queue_ptr stream) {
+
+ GGML_ASSERT(ne % QK4_1 == 0);
+ const int num_blocks = ne / QK4_1;
+ stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
+ sycl::range<3>(1, 1, 1)),
+ [=](sycl::nd_item<3> item_ct1) {
+ cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
+ cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+ item_ct1);
+ });
+}
+
+static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
+ const int ne00, const int ne01,
+ const int ne02, const int nb00,
+ const int nb01, const int nb02,
+ const int nb03, const int ne10,
+ const int ne11, const int ne12,
+ const int nb10, const int nb11,
+ const int nb12, const int nb13,
+ queue_ptr stream) {
+
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+ item_ct1);
+ });
+ }
+}
+
+static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
+ const int ne00, const int ne01,
+ const int ne02, const int nb00,
+ const int nb01, const int nb02,
+ const int nb03, const int ne10,
+ const int ne11, const int ne12,
+ const int nb10, const int nb11,
+ const int nb12, const int nb13,
+ queue_ptr stream) {
+
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+ {
+ // dpct::has_capability_or_fail(stream->get_device(),
+ // {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+ item_ct1);
+ });
+ }
+}
+
+static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
+ const int ne00, const int ne01,
+ const int ne02, const int nb00,
+ const int nb01, const int nb02,
+ const int nb03, const int ne10,
+ const int ne11, const int ne12,
+ const int nb10, const int nb11,
+ const int nb12, const int nb13,
+ queue_ptr stream) {
+
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+ {
+ // dpct::has_capability_or_fail(stream->get_device(),
+ // {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+ item_ct1);
+ });
+ }
+}
+
+static void scale_f32_sycl(const float *x, float *dst, const float scale,
+ const int k, queue_ptr stream) {
+ const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ scale_f32(x, dst, scale, k, item_ct1);
+ });
+}
+
+static void clamp_f32_sycl(const float *x, float *dst, const float min,
+ const float max, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ clamp_f32(x, dst, min, max, k, item_ct1);
+ });
+}
+
+static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
+ const int nrows, queue_ptr stream) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ const sycl::range<3> block_nums(1, nrows, 1);
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ k_sum_rows_f32(x, dst, ncols, item_ct1);
+ });
+}
+
+static int next_power_of_2(int x) {
+ int n = 1;
+ while (n < x) {
+ n *= 2;
+ }
+ return n;
+}
+
+static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
+ const int nrows, ggml_sort_order order,
+ queue_ptr stream) {
+ // bitonic sort requires ncols to be power of 2
+ const int ncols_pad = next_power_of_2(ncols);
+
+ const sycl::range<3> block_dims(1, 1, ncols_pad);
+ const sycl::range<3> block_nums(1, nrows, 1);
+ const size_t shared_mem = ncols_pad * sizeof(int);
+
+ if (order == GGML_SORT_ORDER_ASC) {
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
+ sycl::range<1>(shared_mem), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(
+ x, dst, ncols, ncols_pad, item_ct1,
+ dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
+ .get());
+ });
+ });
+ } else if (order == GGML_SORT_ORDER_DESC) {
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
+ sycl::range<1>(shared_mem), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(
+ x, dst, ncols, ncols_pad, item_ct1,
+ dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
+ .get());
+ });
+ });
+ } else {
+ GGML_ASSERT(false);
+ }
+}
+
+static void diag_mask_inf_f32_sycl(const float *x, float *dst,
+ const int ncols_x, const int nrows_x,
+ const int rows_per_channel, const int n_past,
+ queue_ptr stream) {
+ const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
+ const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
+ const sycl::range<3> block_nums(1, block_num_x, nrows_x);
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ diag_mask_inf_f32(x, dst, ncols_x,
+ rows_per_channel, n_past,
+ item_ct1);
+ });
+}
+
+template <typename T>
+static void im2col_sycl(const float *x, T *dst, int IW, int IH,
+ int OW, int OH, int KW, int KH, int IC,
+ int offset_delta, int s0, int s1, int p0,
+ int p1, int d0, int d1,
+ queue_ptr stream) {
+ const int parallel_elements = OW * KW * KH;
+ const int num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
+ sycl::range<3> block_nums(IC, OH, num_blocks);
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums *
+ sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
+ parallel_elements, (IC * KH * KW), s0, s1, p0,
+ p1, d0, d1, item_ct1);
+ });
+ }
+}
+
+
+static bool g_sycl_loaded = false;
+
+bool ggml_sycl_loaded(void) {
+ return g_sycl_loaded;
+}
+
+void print_device_detail(int id, sycl::device &device, std::string device_type) {
+
+ dpct::device_info prop;
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ dpct::get_device_info(prop, device)));
+
+ std::string version;
+ version += std::to_string(prop.get_major_version());
+ version += ".";
+ version += std::to_string(prop.get_minor_version());
+
+ device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), "");
+ std::string name = std::string(prop.get_name());
+ name = std::regex_replace(name, std::regex("\\(R\\)"), "");
+ name = std::regex_replace(name, std::regex("\\(TM\\)"), "");
+
+ auto global_mem_size = prop.get_global_mem_size()/1000000;
+
+ fprintf(stderr, "|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|\n", id, device_type.c_str(),
+ name.c_str(), version.c_str(), prop.get_max_compute_units(),
+ prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
+ global_mem_size, device.get_info<sycl::info::device::driver_version>().c_str());
+}
+
+void ggml_backend_sycl_print_sycl_devices() {
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_print_sycl_devices\n");
+ int device_count = dpct::dev_mgr::instance().device_count();
+ std::map<std::string, size_t> DeviceNums;
+ fprintf(stderr, "found %d SYCL devices:\n", device_count);
+ fprintf(stderr, "| | | | |Max | |Max |Global | |\n");
+ fprintf(stderr, "| | | | |compute|Max work|sub |mem | |\n");
+ fprintf(stderr, "|ID| Device Type| Name|Version|units |group |group|size | Driver version|\n");
+ fprintf(stderr, "|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|\n");
+ for (int id = 0; id < device_count; ++id) {
+ sycl::device device = dpct::dev_mgr::instance().get_device(id);
+ sycl::backend backend = device.get_backend();
+ std::string backend_type = get_device_backend_and_type(device);
+ int type_id=DeviceNums[backend_type]++;
+ std::stringstream device_type;
+ device_type << "[" << backend_type << ":" << std::to_string(type_id) << "]";
+ print_device_detail(id, device, device_type.str());
+ }
+}
+
+static inline int get_sycl_env(const char *env_name, int default_val) {
+ char *user_device_string = getenv(env_name);
+ int user_number = default_val;
+
+ unsigned n;
+ if (user_device_string != NULL &&
+ sscanf(user_device_string, " %u", &n) == 1) {
+ user_number = (int)n;
+ } else {
+ user_number = default_val;
+ }
+ return user_number;
+}
+
+static void ggml_check_sycl() try {
+ static bool initialized = false;
+
+ if (!initialized) {
+ fprintf(stderr, "[SYCL] call ggml_check_sycl\n");
+ g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
+
+ fprintf(stderr, "%s: GGML_SYCL_DEBUG: %d\n", __func__, g_ggml_sycl_debug);
+
+#if defined(GGML_SYCL_F16)
+ fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__);
+#else
+ fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
+#endif
+
+/* NOT REMOVE, keep it for next optimize for XMX.
+#if defined(SYCL_USE_XMX)
+ fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
+#else
+ fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
+#endif
+*/
+
+ if (CHECK_TRY_ERROR(g_all_sycl_device_count =
+ dpct::dev_mgr::instance().device_count()) != 0) {
+ initialized = true;
+ g_sycl_loaded = false;
+ return;
+ }
+ GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
+ ggml_backend_sycl_print_sycl_devices();
+ initialized = true;
+ g_sycl_loaded = true;
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static ggml_sycl_device_info ggml_sycl_init() {
+ ggml_sycl_device_info info = {};
+
+ info.device_count = dpct::dev_mgr::instance().device_count();
+ if (info.device_count == 0) {
+ fprintf(stderr, "%s: failed to initialize " GGML_SYCL_NAME ": %s\n", __func__);
+ return info;
+ }
+
+ GGML_ASSERT(info.device_count <= GGML_SYCL_MAX_DEVICES);
+
+ int64_t total_vram = 0;
+#if defined(GGML_SYCL_FORCE_MMQ)
+ fprintf(stderr, "%s: GGML_SYCL_FORCE_MMQ: yes\n", __func__);
+#else
+ fprintf(stderr, "%s: GGML_SYCL_FORCE_MMQ: no\n", __func__);
+#endif
+#if defined(SYCL_USE_XMX)
+ fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
+#else
+ fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
+#endif
+ fprintf(stderr, "%s: found %d " GGML_SYCL_NAME " devices:\n", __func__, info.device_count);
+
+ for (int i = 0; i < info.device_count; ++i) {
+ info.devices[i].vmm = 0;
+ dpct::device_info prop;
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
+ prop, dpct::dev_mgr::instance().get_device(i))));
+
+ info.default_tensor_split[i] = total_vram;
+ total_vram += prop.get_global_mem_size();
+
+ info.devices[i].cc =
+ 100 * prop.get_major_version() + 10 * prop.get_minor_version();
+
+ info.max_work_group_sizes[i] = prop.get_max_work_group_size();
+ }
+
+ for (int id = 0; id < info.device_count; ++id) {
+ info.default_tensor_split[id] /= total_vram;
+ }
+ return info;
+}
+
+const ggml_sycl_device_info & ggml_sycl_info() {
+ static ggml_sycl_device_info info = ggml_sycl_init();
+ return info;
+}
+
+/*
+device_index: device index from 0 to n (continue numbers).
+ It is used for device select/set in SYCL backend internal data structure.
+*/
+inline void check_allow_gpu_index(const int device_index) {
+ if (device_index >= ggml_sycl_info().device_count) {
+ char error_buf[256];
+ snprintf(
+ error_buf,
+ sizeof(error_buf),
+ "%s error: device_index:%d is out of range: [0-%d]",
+ __func__,
+ device_index,
+ ggml_sycl_info().device_count - 1);
+ fprintf(stderr, "%s\n", error_buf);
+ assert(false);
+ }
+}
+
+// buffer pool for sycl (legacy)
+struct ggml_sycl_pool_leg : public ggml_sycl_pool {
+ static const int MAX_SYCL_BUFFERS = 256;
+
+ int device;
+ queue_ptr qptr;
+ struct ggml_sycl_buffer {
+ void * ptr = nullptr;
+ size_t size = 0;
+ };
+
+ ggml_sycl_buffer buffer_pool[MAX_SYCL_BUFFERS] = {};
+ size_t pool_size = 0;
+
+ explicit ggml_sycl_pool_leg(queue_ptr qptr_, int device_) :
+ qptr(qptr_),
+ device(device_) {
+ }
+
+ ~ggml_sycl_pool_leg() {
+ for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
+ ggml_sycl_buffer & b = buffer_pool[i];
+ if (b.ptr != nullptr) {
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(b.ptr, *qptr)));
+ pool_size -= b.size;
+ }
+ }
+ GGML_ASSERT(pool_size == 0);
+ }
+
+ void * alloc(size_t size, size_t * actual_size) override {
+#ifdef DEBUG_sycl_MALLOC
+ int nnz = 0;
+ size_t max_size = 0;
+#endif
+ size_t best_diff = 1ull << 36;
+ int ibest = -1;
+ for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
+ ggml_sycl_buffer& b = buffer_pool[i];
+ if (b.ptr != nullptr) {
+#ifdef DEBUG_sycl_MALLOC
+ ++nnz;
+ if (b.size > max_size) max_size = b.size;
+#endif
+ if (b.size >= size) {
+ size_t diff = b.size - size;
+ if (diff < best_diff) {
+ best_diff = diff;
+ ibest = i;
+ if (!best_diff) {
+ void * ptr = b.ptr;
+ *actual_size = b.size;
+ b.ptr = nullptr;
+ b.size = 0;
+ return ptr;
+ }
+ }
+ }
+ }
+ }
+ if (ibest >= 0) {
+ ggml_sycl_buffer& b = buffer_pool[ibest];
+ void * ptr = b.ptr;
+ *actual_size = b.size;
+ b.ptr = nullptr;
+ b.size = 0;
+ return ptr;
+ }
+ void * ptr;
+ size_t look_ahead_size = (size_t) (1.05 * size);
+
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device(
+ look_ahead_size, *qptr)));
+ *actual_size = look_ahead_size;
+ pool_size += look_ahead_size;
+
+ #ifdef DEBUG_SYCL_MALLOC
+ fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
+ (uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
+ #endif
+ // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg look_ahead_size=%lu, return %p\n", look_ahead_size, ptr);
+ return ptr;
+ }
+
+ void free(void * ptr, size_t size) override {
+ for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
+ ggml_sycl_buffer& b = buffer_pool[i];
+ if (b.ptr == nullptr) {
+ b.ptr = ptr;
+ b.size = size;
+ return;
+ }
+ }
+ fprintf(stderr, "WARNING: sycl buffer pool full, increase MAX_sycl_BUFFERS\n");
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *qptr)));
+ pool_size -= size;
+ }
+};
+
+std::unique_ptr<ggml_sycl_pool> ggml_backend_sycl_context::new_pool_for_device(queue_ptr qptr, int device) {
+ // TBD: NO VMM support
+ // if (ggml_sycl_info().devices[device].vmm) {
+ // return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_vmm(device));
+ // }
+ return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_leg(qptr, device));
+}
+
+// TBD pool with virtual memory management
+// struct ggml_sycl_pool_vmm : public ggml_sycl_pool
+
+static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
+ const struct ggml_tensor *src,
+ int64_t i3, int64_t i2,
+ int64_t i1_low, int64_t i1_high,
+ queue_ptr stream) try {
+
+ dpct::memcpy_direction kind;
+ char * src_ptr;
+ if (src->backend == GGML_BACKEND_TYPE_CPU) {
+ kind = dpct::host_to_device;
+ src_ptr = (char *) src->data;
+ // GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
+ } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
+ GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
+ kind = dpct::device_to_device;
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
+ int id;
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ id = get_current_device_id()));
+ // GGML_SYCL_DEBUG("current device index %d\n", id);
+ src_ptr = (char *) extra->data_device[id];
+ } else {
+ // GGML_SYCL_DEBUG("GGML_ASSERT(false)\n");
+ GGML_ASSERT(false);
+ }
+ char * dst_ptr = (char *) dst;
+
+ GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
+ GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
+ const enum ggml_type type = src->type;
+ const int64_t ts = ggml_type_size(type);
+ const int64_t bs = ggml_blck_size(type);
+ int64_t i1_diff = i1_high - i1_low;
+
+ const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
+ if (nb0 == ts && nb1 == ts*ne0/bs) {
+ // GGML_SYCL_DEBUG("stream->memcpy: dst_ptr=%p, x=%p, size=%lu\n", dst_ptr, x, i1_diff * nb1);
+ // return CHECK_TRY_ERROR(stream->memcpy(dst_ptr, x, i1_diff * nb1));
+ return CHECK_TRY_ERROR(dpct::async_dpct_memcpy(dst_ptr, x, i1_diff * nb1,
+ kind, *stream));
+
+ } else if (nb0 == ts) {
+ return CHECK_TRY_ERROR(
+ dpct::async_dpct_memcpy(dst_ptr, ts * ne0 / bs, x, nb1,
+ ts * ne0 / bs, i1_diff, kind, *stream));
+ } else {
+ for (int64_t i1 = 0; i1 < i1_diff; i1++) {
+ const void * rx = (const void *) ((const char *) x + i1*nb1);
+ void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
+ // pretend the row is a matrix with cols=1
+ dpct::err0 r = CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
+ rd, ts / bs, rx, nb0, ts / bs, ne0, kind, *stream));
+ /*
+ DPCT1001:85: The statement could not be removed.
+ */
+ /*
+ DPCT1000:86: Error handling if-stmt was detected but could not be
+ rewritten.
+ */
+ if (r != 0) return r;
+ }
+ return 0;
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_d, const float *src1_d,
+ float *dst_d, const queue_ptr &stream) {
+
+ GGML_ASSERT(src1->type == GGML_TYPE_I32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
+ GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
+ GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
+
+ const int32_t * src1_i32 = (const int32_t *) src1_d;
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ get_rows_sycl_float(ctx, src0, src1, dst, (const sycl::half *)src0_d,
+ src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_F32:
+ get_rows_sycl_float(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q4_0:
+ get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ default:
+ // TODO: k-quants
+ fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
+ GGML_ASSERT(false);
+ break;
+ }
+}
+
+template <class op>
+inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+ op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
+ op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
+ (sycl::half *)dst_dd, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
+ op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
+ main_stream);
+ } else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
+ op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
+ main_stream);
+ } else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
+ op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
+ main_stream);
+ } else {
+ fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
+ ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
+ GGML_ASSERT(false);
+ }
+}
+
+static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_d, const float *src1_d,
+ float *dst_d,
+ const queue_ptr &main_stream) {
+
+ ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
+
+ (void) src1;
+ (void) src1_d;
+}
+
+inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+}
+
+inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
+
+ int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
+ int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
+ // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
+ int offset = dst->op_params[3] / 4; // offset in bytes
+
+ acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
+
+ (void) dst;
+}
+
+inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+}
+
+inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+}
+
+inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+static void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+static void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd, const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ float negative_slope;
+ memcpy(&negative_slope, dst->op_params, sizeof(float));
+
+ leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ const float sf0 = (float)dst->ne[0]/src0->ne[0];
+ const float sf1 = (float)dst->ne[1]/src0->ne[1];
+ const float sf2 = (float)dst->ne[2]/src0->ne[2];
+ const float sf3 = (float)dst->ne[3]/src0->ne[3];
+
+ upscale_f32_sycl(src0_dd, dst_dd, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
+ main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+
+ pad_f32_sycl(src0_dd, dst_dd,
+ src0->ne[0], src0->ne[1], src0->ne[2],
+ dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split) {
+ int64_t min_compute_capability = INT_MAX;
+ int64_t max_compute_capability = INT_MIN;
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ if (tensor_split[i] < (i + 1 < ggml_sycl_info().device_count ? tensor_split[i + 1] : 1.0f)) {
+ if (min_compute_capability > ggml_sycl_info().devices[i].cc) {
+ min_compute_capability = ggml_sycl_info().devices[i].cc;
+ }
+ if (max_compute_capability < ggml_sycl_info().devices[i].cc) {
+ max_compute_capability = ggml_sycl_info().devices[i].cc;
+ }
+ }
+ }
+
+ switch(type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ return max_compute_capability >= VER_GEN9 ? 128 : 64;
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ return 64;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_F32:
+ return 1;
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ4_NL:
+ return max_compute_capability >= VER_GEN9 ? 128 : 64;
+ case GGML_TYPE_IQ3_S:
+ return max_compute_capability >= VER_GEN9 ? 128 : 64;
+ case GGML_TYPE_Q6_K:
+ return 64;
+ default:
+ GGML_ASSERT(false);
+ }
+
+}
+
+inline void ggml_sycl_op_mul_mat_sycl(
+ ggml_backend_sycl_context & ctx,
+ const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+ const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
+ float *dst_dd_i, const int64_t row_low, const int64_t row_high,
+ const int64_t src1_ncols, const int64_t src1_padded_row_size,
+ const queue_ptr &stream) try {
+
+ GGML_ASSERT(src0_dd_i != nullptr);
+ GGML_ASSERT(src1_ddf_i != nullptr);
+ GGML_ASSERT(dst_dd_i != nullptr);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne10 = src1->ne[0];
+
+ const int64_t ne0 = dst->ne[0];
+
+ const int64_t row_diff = row_high - row_low;
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+
+ // the main device has a larger memory buffer to hold the results from all GPUs
+ // ldc == nrows of the matrix that cuBLAS writes into
+ int ldc = id == ctx.device ? ne0 : row_diff;
+
+#ifdef GGML_SYCL_F16
+ bool use_fp16 = true; // TODO(Yu) SYCL capability check
+#else
+ bool use_fp16 = false;
+#endif
+ if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
+ use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
+ dst->op_params[0] == GGML_PREC_DEFAULT) {
+
+ // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
+ ggml_sycl_pool_alloc<sycl::half> src0_as_f16(ctx.pool());
+ if (src0->type != GGML_TYPE_F16) {
+ const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type);
+ GGML_ASSERT(to_fp16_sycl != nullptr);
+ size_t ne = row_diff*ne00;
+ src0_as_f16.alloc(ne);
+ to_fp16_sycl(src0_dd_i, src0_as_f16.get(), ne, stream);
+ }
+ const sycl::half *src0_ptr = src0->type == GGML_TYPE_F16
+ ? (const sycl::half *)src0_dd_i
+ : src0_as_f16.get();
+
+ ggml_sycl_pool_alloc<sycl::half> src1_as_f16(ctx.pool());
+ if (src1->type != GGML_TYPE_F16) {
+ const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
+ GGML_ASSERT(to_fp16_sycl != nullptr);
+ size_t ne = src1_ncols*ne10;
+ src1_as_f16.alloc(ne);
+ to_fp16_sycl(src1_ddf_i, src1_as_f16.get(), ne, stream);
+ }
+ const sycl::half *src1_ptr = src1->type == GGML_TYPE_F16
+ ? (const sycl::half *)src1->data + src1_padded_row_size
+ : src1_as_f16.get();
+ ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool(), row_diff * src1_ncols);
+
+ const sycl::half alpha_f16 = 1.0f;
+ const sycl::half beta_f16 = 0.0f;
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
+ *stream, oneapi::mkl::transpose::trans,
+ oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
+ &alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
+ src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
+ dst_f16.get(), dpct::library_data_t::real_half, ldc,
+ dpct::library_data_t::real_half)));
+ const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
+ to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
+ }
+ else {
+ // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
+ ggml_sycl_pool_alloc<float> src0_ddq_as_f32(ctx.pool());
+ ggml_sycl_pool_alloc<float> src1_ddq_as_f32(ctx.pool());
+ if (src0->type != GGML_TYPE_F32) {
+ const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type);
+ GGML_ASSERT(to_fp32_sycl != nullptr);
+ src0_ddq_as_f32.alloc(row_diff*ne00);
+ to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
+ }
+ if (src1->type != GGML_TYPE_F32) {
+ const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src1->type);
+ GGML_ASSERT(to_fp32_sycl != nullptr);
+ src1_ddq_as_f32.alloc(src1_ncols*ne10);
+ to_fp32_sycl(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
+ }
+ const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
+ const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
+
+ const float alpha = 1.0f;
+ const float beta = 0.0f;
+
+ SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
+ *stream, oneapi::mkl::transpose::trans,
+ oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
+ dpct::get_value(&alpha, *stream), src0_ddf_i, ne00,
+ src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
+ dst_dd_i, ldc)));
+ }
+ (void) dst;
+ (void) src1_ddq_i;
+ (void) src1_padded_row_size;
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd, const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+ enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
+ const int k0 = opts[1];
+ const int k1 = opts[2];
+ const int s0 = opts[3];
+ const int s1 = opts[4];
+ const int p0 = opts[5];
+ const int p1 = opts[6];
+
+ const int64_t IH = src0->ne[1];
+ const int64_t IW = src0->ne[0];
+
+ const int64_t N = dst->ne[3];
+ const int64_t OC = dst->ne[2];
+ const int64_t OH = dst->ne[1];
+ const int64_t OW = dst->ne[0];
+
+ const int parallel_elements = N * OC * OH * OW;
+ const int num_blocks = (parallel_elements + SYCL_POOL2D_BLOCK_SIZE - 1) / SYCL_POOL2D_BLOCK_SIZE;
+ sycl::range<3> block_nums(1, 1, num_blocks);
+ main_stream->parallel_for(
+ sycl::nd_range<3>(block_nums *
+ sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ pool2d_nchw_kernel(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0,
+ parallel_elements, src0_dd, dst_dd, op,
+ item_ct1);
+ });
+
+ (void) src1;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
+
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
+
+ const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
+
+ const int64_t IC = src1->ne[is_2D ? 2 : 1];
+ const int64_t IH = is_2D ? src1->ne[1] : 1;
+ const int64_t IW = src1->ne[0];
+
+ const int64_t KH = is_2D ? src0->ne[1] : 1;
+ const int64_t KW = src0->ne[0];
+
+ const int64_t OH = is_2D ? dst->ne[2] : 1;
+ const int64_t OW = dst->ne[1];
+
+ const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
+
+ if (dst->type == GGML_TYPE_F16) {
+ im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
+ } else {
+ im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
+ }
+
+ (void) src0;
+ (void) src0_dd;
+}
+
+inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int64_t ncols = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_I32);
+
+ const int64_t ncols = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
+
+ argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int nrows0 = ggml_nrows(src0);
+
+ const int n_past = ((int32_t *) dst->op_params)[0];
+
+ diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ float scale;
+ memcpy(&scale, dst->op_params, sizeof(float));
+
+ scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
+ /*
+ DPCT1010:87: SYCL uses exceptions to report errors and does not use the
+ error codes. The call was replaced with 0. You need to rewrite this code.
+ */
+ SYCL_CHECK(0);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const float *src0_dd,
+ const float *src1_dd, float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ float min;
+ float max;
+ memcpy(&min, dst->op_params, sizeof(float));
+ memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
+
+ clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
+ /*
+ DPCT1010:88: SYCL uses exceptions to report errors and does not use the
+ error codes. The call was replaced with 0. You need to rewrite this code.
+ */
+ SYCL_CHECK(0);
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
+static void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const ggml_sycl_op_flatten_t op) try {
+ const int64_t nrows0 = ggml_nrows(src0);
+
+ const bool use_src1 = src1 != nullptr;
+ const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
+
+ GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
+ GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
+
+ ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+ ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
+ ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+
+ // dd = data device
+ float * src0_ddf = (float *) src0->data;
+ float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;
+ float * dst_ddf = (float *) dst->data;
+
+ ggml_sycl_pool_alloc<float> src0_f(ctx.pool());
+ ggml_sycl_pool_alloc<float> src1_f(ctx.pool());
+ ggml_sycl_pool_alloc<float> dst_f(ctx.pool());
+
+ ggml_sycl_set_device(ctx.device);
+ queue_ptr main_stream = ctx.stream();
+ // GGML_SYCL_DEBUG("ctx.device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
+ // ctx.device, main_stream, src0_on_device, src1_on_device, dst_on_device);
+
+ // do the computation
+ op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
+ // print_ggml_tensor("tensor", dst);
+}
+catch (sycl::exception const &exc) {
+
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
+ static bool peer_access_enabled = false;
+
+ const bool enable_peer_access = n_tokens <= GGML_SYCL_PEER_MAX_BATCH_SIZE;
+
+ if (peer_access_enabled == enable_peer_access) {
+ return;
+ }
+
+#ifdef NDEBUG
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ SYCL_CHECK(ggml_sycl_set_device(i));
+ }
+
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ SYCL_CHECK(ggml_sycl_set_device(i));
+
+ for (int id_other = 0; id_other < ggml_sycl_info().device_count; ++id_other) {
+ if (i == id_other) {
+ continue;
+ }
+ if (i != main_device && id_other != main_device) {
+ continue;
+ }
+
+ // int can_access_peer;
+ // SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
+ // if (can_access_peer) {
+ // if (enable_peer_access) {
+ // SYCL_CHECK(syclDeviceEnablePeerAccess(id_other, 0));
+ // } else {
+ // SYCL_CHECK(syclDeviceDisablePeerAccess(id_other));
+ // }
+ // }
+ }
+ }
+#endif // NDEBUG
+
+ peer_access_enabled = enable_peer_access;
+}
+
+struct ggml_backend_sycl_split_buffer_type_context {
+ std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
+};
+
+static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ ggml_sycl_op_mul_mat_t op,
+ const bool convert_src1_to_q8_1) try {
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
+
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
+ const int64_t nrows1 = ggml_nrows(src1);
+
+ GGML_ASSERT(ne03 == ne13);
+
+ const int64_t ne0 = dst->ne[0];
+ const int64_t ne1 = dst->ne[1];
+
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
+ GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
+
+ GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
+
+ const int64_t i02_divisor = ne12 / ne02;
+
+ const size_t src0_ts = ggml_type_size(src0->type);
+ const size_t src0_bs = ggml_blck_size(src0->type);
+ const size_t q8_1_ts = sizeof(block_q8_1);
+ const size_t q8_1_bs = QK8_1;
+
+ ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+ ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+ ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+
+ const bool src0_is_contiguous = ggml_is_contiguous(src0);
+ const bool src1_is_contiguous = ggml_is_contiguous(src1);
+
+ int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
+
+ const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
+ GGML_ASSERT(!(split && ne02 > 1));
+ GGML_ASSERT(!(split && ne03 > 1));
+ GGML_ASSERT(!(split && ne02 < ne12));
+
+ std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
+ if (split) {
+ // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
+ // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
+ tensor_split = buft_ctx->tensor_split;
+ }
+
+ struct dev_data {
+ ggml_sycl_pool_alloc<char> src0_dd_alloc;
+ ggml_sycl_pool_alloc<float> src1_ddf_alloc;
+ ggml_sycl_pool_alloc<char> src1_ddq_alloc;
+ ggml_sycl_pool_alloc<float> dst_dd_alloc;
+
+ char *src0_dd = nullptr;
+ float *src1_ddf = nullptr; // float
+ char *src1_ddq = nullptr; // q8_1
+ float *dst_dd = nullptr;
+
+ int64_t row_low;
+ int64_t row_high;
+ };
+
+ dev_data dev[GGML_SYCL_MAX_DEVICES];
+
+ int used_devices = 0;
+ queue_ptr main_stream = ctx.stream();
+
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ // by default, use all rows
+ dev[i].row_low = 0;
+ dev[i].row_high = ne01;
+
+ // for multi GPU, get the row boundaries from tensor split
+ // and round to mul_mat_q tile sizes
+ if (split) {
+ const int64_t rounding = get_row_rounding(src0->type, tensor_split);
+
+ if (i != 0) {
+ dev[i].row_low = ne01*tensor_split[i];
+ if (dev[i].row_low < ne01) {
+ dev[i].row_low -= dev[i].row_low % rounding;
+ }
+ }
+
+ if (i != ggml_sycl_info().device_count - 1) {
+ dev[i].row_high = ne01*tensor_split[i + 1];
+ if (dev[i].row_high < ne01) {
+ dev[i].row_high -= dev[i].row_high % rounding;
+ }
+ }
+ }
+ }
+
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
+ continue;
+ }
+
+ used_devices++;
+
+ const bool src1_on_device = i == ctx.device;
+ const bool dst_on_device = i == ctx.device;
+
+ ggml_sycl_set_device(i);
+ queue_ptr stream = ctx.stream(i, 0);
+
+ if (src0_is_contiguous) {
+ dev[i].src0_dd = (char *) src0->data;
+ } else {
+ dev[i].src0_dd = dev[i].src0_dd_alloc.alloc(ctx.pool(i), ggml_nbytes(src0));
+ }
+
+ if (src1_on_device && src1_is_contiguous) {
+ dev[i].src1_ddf = (float *) src1->data;
+ } else {
+ dev[i].src1_ddf = dev[i].src1_ddf_alloc.alloc(ctx.pool(i), ggml_nelements(src1));
+ }
+
+ if (convert_src1_to_q8_1) {
+ dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
+
+ if (src1_on_device && src1_is_contiguous) {
+ quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
+ /*
+ DPCT1010:90: SYCL uses exceptions to report errors and does not
+ use the error codes. The call was replaced with 0. You need to
+ rewrite this code.
+ */
+ SYCL_CHECK(0);
+ }
+ }
+
+ if (dst_on_device) {
+ dev[i].dst_dd = (float *) dst->data;
+ } else {
+ const size_t size_dst_ddf = split ? (dev[i].row_high - dev[i].row_low)*ne1 : ggml_nelements(dst);
+ dev[i].dst_dd = dev[i].dst_dd_alloc.alloc(ctx.pool(i), size_dst_ddf);
+ }
+ }
+
+ // if multiple devices are used they need to wait for the main device
+ // here an event is recorded that signals that the main device has finished calculating the input data
+ if (split && used_devices > 1) {
+ ggml_sycl_set_device(ctx.device);
+ /*
+ DPCT1024:91: The original code returned the error code that was further
+ consumed by the program logic. This original code was replaced with 0.
+ You may need to rewrite the program logic consuming the error code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ *src0_extra->events[ctx.device][0] =
+ ctx.stream()->ext_oneapi_submit_barrier()));
+ }
+
+ const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
+ for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
+ const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_SYCL_MAX_STREAMS : 0;
+ const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
+
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
+ continue;
+ }
+
+ const bool src1_on_device = i == ctx.device;
+ const bool dst_on_device = i == ctx.device;
+ const int64_t row_diff = dev[i].row_high - dev[i].row_low;
+
+ ggml_sycl_set_device(i);
+ queue_ptr stream = ctx.stream(i, is);
+
+ // wait for main GPU data if necessary
+ if (split && (i != ctx.device || is != 0)) {
+ /*
+ DPCT1009:163: SYCL uses exceptions to report errors and does not
+ use the error codes. The original code was commented out and a
+ warning string was inserted. You need to rewrite this code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
+ {*src0_extra->events[ctx.device][0]})));
+ }
+
+ for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
+ const int64_t i03 = i0 / ne12;
+ const int64_t i02 = i0 % ne12;
+
+ const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
+
+ // for split tensors the data begins at i0 == i0_offset_low
+ char * src0_dd_i = dev[i].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
+ float * src1_ddf_i = dev[i].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
+ char * src1_ddq_i = dev[i].src1_ddq + src1_ddq_i_offset;
+ float * dst_dd_i = dev[i].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
+
+ // the main device memory buffer can be on VRAM scratch, with space for all partial results
+ // in that case an offset on dst_ddf_i is needed
+ if (i == ctx.device) {
+ dst_dd_i += dev[i].row_low; // offset is 0 if no tensor split
+ }
+
+ // copy src0, src1 to device if necessary
+ if (src1_is_contiguous) {
+ if (i != ctx.device) {
+ if (convert_src1_to_q8_1) {
+ char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
+ SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
+ src1_ddq_i, src1_ddq_i_source,
+ src1_ncols * src1_padded_col_size * q8_1_ts /
+ q8_1_bs).wait()));
+ } else {
+
+ float * src1_ddf_i_source = (float *) src1_extra->data_device[ctx.device];
+ src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
+
+ SYCL_CHECK(CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream,
+ src1_ddf_i, src1_ddf_i_source,
+ src1_ncols * ne10 * sizeof(float))));
+ }
+ }
+ } else if (src1_on_device && !src1_is_contiguous) {
+ SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
+ src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ if (convert_src1_to_q8_1 && !src1_is_contiguous) {
+ quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
+ /*
+ DPCT1010:92: SYCL uses exceptions to report errors and does
+ not use the error codes. The call was replaced with 0. You
+ need to rewrite this code.
+ */
+ SYCL_CHECK(0);
+ }
+
+ if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
+ SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[i].row_low, dev[i].row_high, stream));
+ }
+ if (src1->type == GGML_TYPE_F16) {
+ src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10;
+ }
+ // do the computation
+ SYCL_CHECK(CHECK_TRY_ERROR(op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
+ dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream)));
+ /*
+ DPCT1010:93: SYCL uses exceptions to report errors and does not
+ use the error codes. The call was replaced with 0. You need to
+ rewrite this code.
+ */
+ SYCL_CHECK(0);
+
+ // copy dst to host or other device if necessary
+ if (!dst_on_device) {
+ void * dst_off_device = dst->data;
+ if (split) {
+ // src0 = weight matrix is saved as a transposed matrix for better memory layout.
+ // dst is NOT transposed.
+ // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
+ // Instead they need to be copied to the correct slice in ne0 = dst row index.
+ // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
+ float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
+ GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
+ dhf_dst_i += src1_col_0*ne0 + dev[i].row_low;
+
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
+ dhf_dst_i, ne0 * sizeof(float), dst_dd_i,
+ row_diff * sizeof(float), row_diff * sizeof(float),
+ src1_ncols, dpct::device_to_device, *stream)));
+ } else {
+ float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
+ GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
+ dhf_dst_i += src1_col_0*ne0;
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ stream->memcpy(dhf_dst_i, dst_dd_i,
+ src1_ncols * ne0 * sizeof(float)).wait()));
+ }
+ }
+
+ // add event for the main device to wait on until other device is done
+ if (split && (i != ctx.device || is != 0)) {
+ /*
+ DPCT1024:94: The original code returned the error code that
+ was further consumed by the program logic. This original
+ code was replaced with 0. You may need to rewrite the
+ program logic consuming the error code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ *src0_extra->events[i][is] =
+ stream->ext_oneapi_submit_barrier()));
+ }
+ }
+ }
+ }
+
+ // main device waits for all other devices to be finished
+ if (split && ggml_sycl_info().device_count > 1) {
+ int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
+ is_max = is_max <= GGML_SYCL_MAX_STREAMS ? is_max : GGML_SYCL_MAX_STREAMS;
+
+ ggml_sycl_set_device(ctx.device);
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ if (dev[i].row_low == dev[i].row_high) {
+ continue;
+ }
+ for (int64_t is = 0; is < is_max; ++is) {
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ ctx.stream()->ext_oneapi_submit_barrier(
+ {*src0_extra->events[i][is]})));
+ }
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+
+static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_repeat);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_get_rows);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_add);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_acc);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_mul);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_div);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_silu);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu_quick);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_tanh);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_relu);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardsigmoid);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardswish);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_leaky_relu);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sqr);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_norm);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_group_norm);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_upscale);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pad);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+
+static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rms_norm);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+
+static void ggml_sycl_mul_mat_vec_p021(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1,
+ ggml_tensor *dst) try {
+ GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
+ GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
+ GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
+ GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+
+ const int64_t ne12 = src1->ne[2];
+
+ SYCL_CHECK(ggml_sycl_set_device(ctx.device));
+ queue_ptr main_stream = ctx.stream();
+
+ void * src0_ddq = src0->data;
+ float * src1_ddf = (float *) src1->data;
+ float * dst_ddf = (float *) dst->data;
+
+ ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_sycl_mul_mat_vec_nc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1,
+ ggml_tensor *dst) try {
+ GGML_ASSERT(!ggml_is_transposed(src0));
+ GGML_ASSERT(!ggml_is_transposed(src1));
+ GGML_ASSERT(!ggml_is_permuted(src0));
+ GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+
+ const int64_t nb01 = src0->nb[1];
+ const int64_t nb02 = src0->nb[2];
+
+ const int64_t ne12 = src1->ne[2];
+
+ SYCL_CHECK(ggml_sycl_set_device(ctx.device));
+ queue_ptr main_stream = ctx.stream();
+
+ void * src0_ddq = src0->data;
+ float * src1_ddf = (float *) src1->data;
+ float * dst_ddf = (float *) dst->data;
+
+ const int64_t row_stride_x = nb01 / sizeof(sycl::half);
+ const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
+
+ ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
+ const sycl::half *src1_as_f16, char *dst,
+ const void **ptrs_src, void **ptrs_dst,
+ int64_t ne12, int64_t ne13, int64_t ne23,
+ size_t nb02, size_t nb03, size_t nb12,
+ size_t nb13, size_t nbd2, size_t nbd3,
+ int64_t r2, int64_t r3,
+ const sycl::nd_item<3> &item_ct1) {
+ int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
+ item_ct1.get_local_id(2);
+ int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
+ item_ct1.get_local_id(1);
+
+ if (i13 >= ne13 || i12 >= ne12) {
+ return;
+ }
+
+ int64_t i03 = i13 / r3;
+ int64_t i02 = i12 / r2;
+
+ ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
+ ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
+ ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
+}
+
+static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
+ const ggml_tensor *src0,
+ const ggml_tensor *src1,
+ ggml_tensor *dst) try {
+ GGML_ASSERT(!ggml_is_transposed(src0));
+ GGML_ASSERT(!ggml_is_transposed(src1));
+ GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t ne_dst = ggml_nelements(dst);
+
+ SYCL_CHECK(ggml_sycl_set_device(ctx.device));
+ queue_ptr main_stream = ctx.stream();;
+
+ void * src0_ddq = src0->data;
+ sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
+ float * src1_ddf = (float *) src1->data;
+ float * dst_ddf = (float *) dst->data;
+
+ // convert src1 to fp16
+ ggml_sycl_pool_alloc<sycl::half> src1_f16_alloc(ctx.pool());
+ if (src1->type != GGML_TYPE_F16) {
+ const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
+ const int64_t ne_src1 = ggml_nelements(src1);
+ src1_f16_alloc.alloc(ne_src1);
+ GGML_ASSERT(to_fp16_sycl != nullptr);
+ to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
+ }
+ sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf
+ : src1_f16_alloc.get();
+
+ char * dst_t;
+
+ dpct::library_data_t cu_compute_type = dpct::library_data_t::real_float;
+ dpct::library_data_t cu_data_type = dpct::library_data_t::real_float;
+
+ // dst strides
+ size_t nbd2 = dst->nb[2];
+ size_t nbd3 = dst->nb[3];
+
+ const float alpha_f32 = 1.0f;
+ const float beta_f32 = 0.0f;
+
+ const void * alpha = &alpha_f32;
+ const void * beta = &beta_f32;
+
+ dst_t = (char *) dst_ddf;
+
+ GGML_ASSERT(ne12 % ne02 == 0);
+ GGML_ASSERT(ne13 % ne03 == 0);
+
+ // broadcast factors
+ const int64_t r2 = ne12/ne02;
+ const int64_t r3 = ne13/ne03;
+
+ if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
+ // there is no broadcast and src0, src1 are contiguous across dims 2, 3
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
+ *main_stream, oneapi::mkl::transpose::trans,
+ oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
+ (const char *)src0_as_f16, dpct::library_data_t::real_half,
+ nb01 / nb00, nb02 / nb00,
+ (const char *)src1_f16, dpct::library_data_t::real_half,
+ nb11 / nb10, nb12 / nb10, beta,
+ (char *)dst_t, cu_data_type, ne01, nb2 / nb0,
+ ne12 * ne13, cu_compute_type)));
+ } else {
+ const int ne23 = ne12*ne13;
+
+ ggml_sycl_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
+ ggml_sycl_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
+
+ sycl::range<3> block_dims(1, ne12, ne13);
+ /*
+ DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(main_stream->get_device(),
+ {sycl::aspect::fp16});
+
+ main_stream->submit([&](sycl::handler &cgh) {
+ const void **ptrs_src_get = ptrs_src.get();
+ void **ptrs_dst_get = ptrs_dst.get();
+ size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2;
+ size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2;
+ cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_compute_batched_ptrs(
+ src0_as_f16, src1_f16,
+ dst_t, ptrs_src_get,
+ ptrs_dst_get, ne12, ne13, ne23,
+ nb02, nb03, nb12_scaled, nb13_scaled,
+ nbd2, nbd3, r2, r3, item_ct1);
+ });
+ });
+ }
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
+ *main_stream, oneapi::mkl::transpose::trans,
+ oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
+ (const void **)(ptrs_src.get() + 0 * ne23),
+ dpct::library_data_t::real_half, nb01 / nb00,
+ (const void **)(ptrs_src.get() + 1 * ne23),
+ dpct::library_data_t::real_half, nb11 / nb10, beta,
+ (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
+ cu_compute_type)));
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
+ // TODO: accuracy issues in MMQ
+ return false;
+}
+
+bool ggml_sycl_supports_dmmv(enum ggml_type type) {
+ switch (type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_F16:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
+ int64_t min_compute_capability = INT_MAX;
+
+ if (split) {
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
+ auto & tensor_split = buft_ctx->tensor_split;
+ for (int id = 0; id < ggml_sycl_info().device_count; ++id) {
+ // skip devices that are not going to do any work:
+ if (tensor_split[id] >= (id + 1 < ggml_sycl_info().device_count ? tensor_split[id + 1] : 1.0f)) {
+ continue;
+ }
+
+ if (min_compute_capability > ggml_sycl_info().devices[id].cc) {
+ min_compute_capability = ggml_sycl_info().devices[id].cc;
+ }
+ }
+ } else {
+ min_compute_capability = ggml_sycl_info().devices[ctx.device].cc;
+ }
+
+ // check data types and tensor shapes for custom matrix multiplication kernels:
+ bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type)
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
+ && src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
+
+ bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
+ && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
+
+ bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type)
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
+
+ // mmvq and mmq need the __dp4a instruction which is available for gen12+
+ // Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
+ use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
+#ifdef SYCL_USE_XMX
+ use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
+#endif // SYCL_USE_XMX
+
+ // mmvq path is faster in the CUDA backend.
+ if (ctx.stream()->get_backend() == sycl::backend::ext_oneapi_cuda)
+ use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
+
+ if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
+ // KQ single-batch
+ ggml_sycl_mul_mat_vec_p021(ctx, src0, src1, dst);
+ } else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
+ // KQV single-batch
+ ggml_sycl_mul_mat_vec_nc(ctx, src0, src1, dst);
+ } else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
+ // KQ + KQV multi-batch
+ ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
+ } else if (use_dequantize_mul_mat_vec) {
+ ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
+ } else if (use_mul_mat_vec_q) {
+ ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
+ } else if (use_mul_mat_q) {
+ ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
+ } else {
+ ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
+ }
+}
+
+
+struct mmid_row_mapping {
+ int32_t i1;
+ int32_t i2;
+};
+
+__dpct_inline__ static void k_copy_src1_to_contiguous(
+ const char *__restrict__ src1_original, char *__restrict__ src1_contiguous,
+ int *__restrict__ cur_src1_row, mmid_row_mapping *__restrict__ row_mapping,
+ const char *__restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
+ int64_t ne11, int64_t ne10, size_t nb11, size_t nb12,
+ const sycl::nd_item<3> &item_ct1, int &src1_row) {
+ int32_t iid1 = item_ct1.get_group(2);
+ int32_t id = item_ct1.get_group(1);
+
+ const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
+
+ if (row_id_i != i02) {
+ return;
+ }
+
+ const int64_t i11 = id % ne11;
+ const int64_t i12 = iid1;
+
+ if (item_ct1.get_local_id(2) == 0) {
+ src1_row =
+ dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
+ cur_src1_row, 1);
+ row_mapping[src1_row] = {id, iid1};
+ }
+ /*
+ DPCT1065:194: Consider replacing sycl::nd_item::barrier() with
+ sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
+ performance if there is no access to global memory.
+ */
+ item_ct1.barrier();
+
+ const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
+ float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
+
+#pragma unroll
+ for (int i = item_ct1.get_local_id(2); i < ne10;
+ i += item_ct1.get_local_range(2)) {
+ src1_row_contiguous[i] = src1_row_original[i];
+ }
+}
+
+__dpct_inline__ static void k_copy_dst_from_contiguous(
+ char *__restrict__ dst_original, const char *__restrict__ dst_contiguous,
+ const mmid_row_mapping *__restrict__ row_mapping, int64_t ne0, size_t nb1,
+ size_t nb2, const sycl::nd_item<3> &item_ct1) {
+ int32_t i = item_ct1.get_group(2);
+
+ const int32_t i1 = row_mapping[i].i1;
+ const int32_t i2 = row_mapping[i].i2;
+
+ const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
+ float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
+
+#pragma unroll
+ for (int j = item_ct1.get_local_id(2); j < ne0;
+ j += item_ct1.get_local_range(2)) {
+ dst_row_original[j] = dst_row_contiguous[j];
+ }
+}
+
+static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1,
+ ggml_tensor *dst) try {
+ GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers");
+
+ const ggml_tensor *ids = dst->src[2];
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const queue_ptr stream = ctx.stream();
+
+ const int64_t n_as = ne02;
+ const int64_t n_ids = ids->ne[0];
+
+ std::vector<char> ids_host(ggml_nbytes(ids));
+ const char * ids_dev = (const char *) ids->data;
+
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
+ SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
+
+ ggml_tensor src0_row = *src0;
+ ggml_tensor src1_row = *src1;
+ ggml_tensor dst_row = *dst;
+
+ char *src0_original = (char *)src0->data;
+ char *src1_original = (char *)src1->data;
+ char *dst_original = (char *)dst->data;
+
+ src0_row.ne[2] = 1;
+ src0_row.ne[3] = 1;
+ src0_row.nb[3] = nb02;
+
+ src1_row.ne[1] = 1;
+ src1_row.ne[2] = 1;
+ src1_row.ne[3] = 1;
+ src1_row.nb[2] = nb11;
+ src1_row.nb[3] = nb11;
+
+ dst_row.ne[1] = 1;
+ dst_row.ne[2] = 1;
+ dst_row.ne[3] = 1;
+ dst_row.nb[2] = nb1;
+ dst_row.nb[3] = nb1;
+ if (ne12 == 1) {
+ for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
+ for (int64_t id = 0; id < n_ids; id++) {
+ const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
+ GGML_ASSERT(i02 >= 0 && i02 < n_as);
+
+ const int64_t i11 = id % ne11;
+ const int64_t i12 = iid1;
+
+ const int64_t i1 = id;
+ const int64_t i2 = i12;
+
+ src0_row.data = src0_original + i02*nb02;
+ src1_row.data = src1_original + + i11*nb11 + i12*nb12;
+ dst_row.data = dst_original + i1*nb1 + i2*nb2;
+
+ ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
+ }
+ }
+ } else {
+ ggml_sycl_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
+ ggml_sycl_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
+
+ src1_row.data = src1_contiguous.get();
+ dst_row.data = dst_contiguous.get();
+
+ for (int64_t i02 = 0; i02 < n_as; i02++) {
+ int64_t num_src1_rows = 0;
+ for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
+ for (int64_t id = 0; id < n_ids; id++) {
+ const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
+
+ GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
+
+ if (row_id_i != i02) {
+ continue;
+ }
+
+ num_src1_rows++;
+ }
+ }
+
+ if (num_src1_rows == 0) {
+ continue;
+ }
+
+
+ ggml_sycl_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
+ ggml_sycl_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ stream->memset(dev_cur_src1_row.get(), 0, sizeof(int))));
+
+ {
+ sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, 768u));
+ sycl::range<3> grid_dims(1, n_ids, ids->ne[1]);
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 0> src1_row_acc(cgh);
+
+ char *__restrict src1_contiguous_get =
+ src1_contiguous.get();
+ int *__restrict dev_cur_src1_row_get =
+ dev_cur_src1_row.get();
+ mmid_row_mapping *__restrict dev_row_mapping_get =
+ dev_row_mapping.get();
+ size_t ids_nb_ct6 = ids->nb[1];
+ size_t ids_nb_ct7 = ids->nb[0];
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(grid_dims * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_copy_src1_to_contiguous(
+ src1_original, src1_contiguous_get,
+ dev_cur_src1_row_get,
+ dev_row_mapping_get, ids_dev, i02,
+ ids_nb_ct6, ids_nb_ct7, ne11, ne10, nb11, nb12,
+ item_ct1, src1_row_acc);
+ });
+ });
+ }
+
+ src0_row.data = src0_original + i02*nb02;
+
+ GGML_ASSERT(nb11 == sizeof(float)*ne10);
+ GGML_ASSERT(nb1 == sizeof(float)*ne0);
+ src1_row.ne[1] = num_src1_rows;
+
+ src1_row.nb[1] = nb11;
+ src1_row.nb[2] = num_src1_rows*nb11;
+ src1_row.nb[3] = num_src1_rows*nb11;
+
+ dst_row.ne[1] = num_src1_rows;
+ dst_row.nb[1] = nb1;
+ dst_row.nb[2] = num_src1_rows*nb1;
+ dst_row.nb[3] = num_src1_rows*nb1;
+
+ ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
+
+ {
+ sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, 768u));
+ sycl::range<3> grid_dims(1, 1, num_src1_rows);
+ stream->submit([&](sycl::handler &cgh) {
+ const char *__restrict dst_contiguous_get =
+ dst_contiguous.get();
+ const mmid_row_mapping *__restrict dev_row_mapping_get =
+ dev_row_mapping.get();
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(grid_dims * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_copy_dst_from_contiguous(dst_original,
+ dst_contiguous_get,
+ dev_row_mapping_get,
+ ne0, nb1, nb2, item_ct1);
+ });
+ });
+ }
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_scale);
+}
+
+static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_clamp);
+}
+
+static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst) try {
+ const int64_t ne = ggml_nelements(src0);
+ GGML_ASSERT(ne == ggml_nelements(src1));
+
+ GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
+ GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
+
+ GGML_TENSOR_BINARY_OP_LOCALS01;
+
+ SYCL_CHECK(ggml_sycl_set_device(ctx.device));
+ queue_ptr main_stream = ctx.stream();
+
+ char * src0_ddc = (char *) src0->data;
+ char * src1_ddc = (char *) src1->data;
+
+ if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
+ ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
+ ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
+ ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
+ ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
+ ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
+ ggml_cpy_f16_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
+ ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
+ ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
+ ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else {
+ fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
+ ggml_type_name(src0->type), ggml_type_name(src1->type));
+ GGML_ASSERT(false);
+ }
+
+ (void) dst;
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ // TODO: why do we pass dst as src1 here?
+ ggml_sycl_cpy(ctx, src0, dst, nullptr);
+ (void) src1;
+}
+
+static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_diag_mask_inf);
+}
+
+static void ggml_sycl_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_soft_max);
+}
+
+static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rope);
+}
+
+static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pool2d);
+}
+
+static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_im2col);
+}
+
+static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sum_rows);
+}
+
+static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_argsort);
+}
+
+static void ggml_sycl_nop(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ (void) src0;
+ (void) src1;
+ (void) dst;
+}
+
+static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
+}
+
+void ggml_sycl_set_main_device(const int main_device) try {
+ if (dpct::get_current_device_id() == main_device) return;
+ check_allow_gpu_index(main_device);
+ dpct::select_device(main_device);
+
+ if (g_ggml_sycl_debug) {
+ dpct::device_info prop;
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
+ prop, dpct::dev_mgr::instance().get_device(main_device))));
+ fprintf(stderr, "Using device %d (%s) as main device\n",
+ main_device, prop.get_name());
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * tensor) {
+ if (!g_sycl_loaded) return false;
+
+ ggml_sycl_func_t func;
+
+ switch (tensor->op) {
+ case GGML_OP_REPEAT:
+ func = ggml_sycl_repeat;
+ break;
+ case GGML_OP_GET_ROWS:
+ func = ggml_sycl_get_rows;
+ break;
+ case GGML_OP_DUP:
+ func = ggml_sycl_dup;
+ break;
+ case GGML_OP_ADD:
+ func = ggml_sycl_add;
+ break;
+ case GGML_OP_ACC:
+ func = ggml_sycl_acc;
+ break;
+ case GGML_OP_MUL:
+ func = ggml_sycl_mul;
+ break;
+ case GGML_OP_DIV:
+ func = ggml_sycl_div;
+ break;
+ case GGML_OP_UNARY:
+ switch (ggml_get_unary_op(tensor)) {
+ case GGML_UNARY_OP_GELU:
+ func = ggml_sycl_gelu;
+ break;
+ case GGML_UNARY_OP_SILU:
+ func = ggml_sycl_silu;
+ break;
+ case GGML_UNARY_OP_GELU_QUICK:
+ func = ggml_sycl_gelu_quick;
+ break;
+ case GGML_UNARY_OP_TANH:
+ func = ggml_sycl_tanh;
+ break;
+ case GGML_UNARY_OP_RELU:
+ func = ggml_sycl_relu;
+ break;
+ case GGML_UNARY_OP_HARDSIGMOID:
+ func = ggml_sycl_hardsigmoid;
+ break;
+ case GGML_UNARY_OP_HARDSWISH:
+ func = ggml_sycl_hardswish;
+ break;
+ default:
+ return false;
+ }
+ break;
+ case GGML_OP_NORM:
+ func = ggml_sycl_norm;
+ break;
+ case GGML_OP_GROUP_NORM:
+ func = ggml_sycl_group_norm;
+ break;
+ case GGML_OP_CONCAT:
+ func = ggml_sycl_op_concat;
+ break;
+ case GGML_OP_UPSCALE:
+ func = ggml_sycl_upscale;
+ break;
+ case GGML_OP_PAD:
+ func = ggml_sycl_pad;
+ break;
+ case GGML_OP_LEAKY_RELU:
+ func = ggml_sycl_leaky_relu;
+ break;
+ case GGML_OP_RMS_NORM:
+ func = ggml_sycl_rms_norm;
+ break;
+ case GGML_OP_MUL_MAT:
+ if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
+ return false;
+ }
+ func = ggml_sycl_mul_mat;
+ break;
+ case GGML_OP_MUL_MAT_ID:
+ if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
+ return false;
+ }
+ func = ggml_sycl_mul_mat_id;
+ break;
+ case GGML_OP_SCALE:
+ func = ggml_sycl_scale;
+ break;
+ case GGML_OP_SQR:
+ func = ggml_sycl_sqr;
+ break;
+ case GGML_OP_CLAMP:
+ func = ggml_sycl_clamp;
+ break;
+ case GGML_OP_CPY:
+ func = ggml_sycl_cpy;
+ break;
+ case GGML_OP_CONT:
+ func = ggml_sycl_dup;
+ break;
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_TRANSPOSE:
+ func = ggml_sycl_nop;
+ break;
+ case GGML_OP_DIAG_MASK_INF:
+ func = ggml_sycl_diag_mask_inf;
+ break;
+ case GGML_OP_SOFT_MAX:
+ func = ggml_sycl_soft_max;
+ break;
+ case GGML_OP_ROPE:
+ func = ggml_sycl_rope;
+ break;
+ case GGML_OP_IM2COL:
+ func = ggml_sycl_im2col;
+ break;
+ case GGML_OP_POOL_2D:
+ func = ggml_sycl_pool2d;
+ break;
+ case GGML_OP_SUM_ROWS:
+ func = ggml_sycl_sum_rows;
+ break;
+ case GGML_OP_ARGSORT:
+ func = ggml_sycl_argsort;
+ break;
+ default:
+ return false;
+ }
+
+ if (tensor->src[0] != nullptr && ggml_backend_buffer_is_sycl_split(tensor->src[0]->buffer)) {
+ ggml_sycl_set_peer_access(tensor->src[1]->ne[1], ctx.device);
+ }
+
+ func(ctx, tensor->src[0], tensor->src[1], tensor);
+ return true;
+}
+
+GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
+ GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_gpu_list\n");
+ for(int i=0;i<max_len;i++) id_list[i] = -1;
+
+ for (int i=0;i< ggml_sycl_info().device_count;i++){
+ if (i>=max_len) break;
+ id_list[i] = i;
+ }
+ return;
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+int ggml_sycl_get_device_count() try {
+ int device_count;
+ if (CHECK_TRY_ERROR(device_count =
+ dpct::dev_mgr::instance().device_count()) != 0) {
+ return 0;
+ }
+ return device_count;
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
+ size_t description_size) try {
+ GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_device_description\n");
+ dpct::device_info prop;
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
+ prop, dpct::dev_mgr::instance().get_device(device))));
+ snprintf(description, description_size, "%s", prop.get_name());
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free,
+ size_t *total) try {
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
+ ggml_sycl_set_device(device);
+
+ /*
+ DPCT1009:218: SYCL uses exceptions to report errors and does not use the
+ error codes. The original code was commented out and a warning string was
+ inserted. You need to rewrite this code.
+ */
+ /*
+ DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for
+ device information which may not be supported by all compilers or runtimes.
+ You may need to adjust the code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ dpct::dev_mgr::instance().get_device(device).get_memory_info(*free, *total)));
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// backend interface
+
+#define UNUSED GGML_UNUSED
+
+// sycl buffer
+
+struct ggml_backend_sycl_buffer_context {
+ int device;
+ void * dev_ptr = nullptr;
+ queue_ptr stream;
+ std::string name;
+
+ ggml_backend_sycl_buffer_context(int device, void * dev_ptr, queue_ptr stream) :
+ device(device), dev_ptr(dev_ptr), stream(stream) {
+ check_allow_gpu_index(device);
+ name = (GGML_SYCL_NAME + std::to_string(device));
+ }
+
+
+ ~ggml_backend_sycl_buffer_context() {
+ if (dev_ptr != nullptr) {
+ ggml_sycl_set_device(device);
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(dev_ptr, *stream)));
+ }
+ }
+};
+
+GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
+ ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
+ return ctx->name.c_str();
+}
+
+GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
+ return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
+}
+
+static void
+ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+ ggml_sycl_set_device(ctx->device);
+
+ delete ctx;
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+ return ctx->dev_ptr;
+}
+
+GGML_CALL static void
+ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
+ ggml_tensor *tensor) try {
+ ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
+
+ if (tensor->view_src != NULL && tensor->view_offs == 0) {
+ assert(tensor->view_src->buffer->buft == buffer->buft);
+ tensor->backend = tensor->view_src->backend;
+ tensor->extra = tensor->view_src->extra;
+ return;
+ }
+
+
+ if (ggml_is_quantized(tensor->type)) {
+ // initialize padding to 0 to avoid possible NaN values
+ size_t original_size = ggml_nbytes(tensor);
+ size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
+
+ if (padded_size > original_size && tensor->view_src == nullptr) {
+ SYCL_CHECK(CHECK_TRY_ERROR(ctx->stream->memset(
+ (char *)tensor->data + original_size, 0,
+ padded_size - original_size).wait()));
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
+ ggml_tensor *tensor,
+ const void *data, size_t offset,
+ size_t size) try {
+
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+
+ ggml_sycl_set_device(ctx->device);
+ auto stream = &(dpct::dev_mgr::instance().get_device(ctx->device).default_queue());
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
+ char* host_buf = (char*)malloc(size);
+ memcpy(host_buf, data, size);
+ SYCL_CHECK(
+ CHECK_TRY_ERROR((*stream).memcpy((char *)tensor->data + offset, host_buf, size)
+ .wait()));
+ free(host_buf);
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
+ const ggml_tensor *tensor,
+ void *data, size_t offset,
+ size_t size) try {
+
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+
+ ggml_sycl_set_device(ctx->device);
+ auto stream = dpct::dev_mgr::instance().get_device(ctx->device).default_queue();
+
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ stream.memcpy(data, (const char *)tensor->data + offset, size)
+ .wait()));
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_CALL static bool
+ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
+ const ggml_tensor *src,
+ ggml_tensor *dst) try {
+ if (ggml_backend_buffer_is_sycl(src->buffer)) {
+ ggml_backend_sycl_buffer_context * src_ctx = (ggml_backend_sycl_buffer_context *)src->buffer->context;
+ ggml_backend_sycl_buffer_context * dst_ctx = (ggml_backend_sycl_buffer_context *)dst->buffer->context;
+
+ ggml_sycl_set_device(src_ctx->device);
+ /*
+ DPCT1009:198: SYCL uses exceptions to report errors and does not use the
+ error codes. The original code was commented out and a warning string
+ was inserted. You need to rewrite this code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ dpct::dev_mgr::instance().get_device(src_ctx->device).queues_wait_and_throw()));
+ ggml_sycl_set_device(dst_ctx->device);
+ /*
+ DPCT1009:199: SYCL uses exceptions to report errors and does not use the
+ error codes. The original code was commented out and a warning string
+ was inserted. You need to rewrite this code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
+ /*
+ DPCT1009:200: SYCL uses exceptions to report errors and does not use the
+ error codes. The original code was commented out and a warning string
+ was inserted. You need to rewrite this code.
+ */
+
+ queue_ptr stream_dst = dst_ctx->stream;
+ queue_ptr stream_src = src_ctx->stream;
+ size_t size = ggml_nbytes(src);
+
+ //todo. it's dirty solutino to walkaroud known issue:device2device cross GPUs.
+ dev2dev_memcpy(*stream_dst, *stream_src, dst->data, src->data, size);
+
+//todo, it's known issue:error in device2device cross GPUs. reused when the issue is fixed. DON"T remove
+#if 0
+ SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy(
+ (char *)dst->data, (const char *)src->data, size).wait()));
+
+ /*
+ DPCT1009:201: SYCL uses exceptions to report errors and does not use the
+ error codes. The original code was commented out and a warning string
+ was inserted. You need to rewrite this code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
+#endif
+ return true;
+ }
+ return false;
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+
+static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
+ uint8_t value) try {
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+
+ ggml_sycl_set_device(ctx->device);
+ queue_ptr stream = ctx->stream;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
+
+ SYCL_CHECK(CHECK_TRY_ERROR((*stream)
+ .memset(ctx->dev_ptr, value, buffer->size)
+ .wait()));
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
+ /* .get_name = */ ggml_backend_sycl_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_sycl_buffer_free_buffer,
+ /* .get_base = */ ggml_backend_sycl_buffer_get_base,
+ /* .init_tensor = */ ggml_backend_sycl_buffer_init_tensor,
+ /* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor,
+ /* .cpy_tensor = */ ggml_backend_sycl_buffer_cpy_tensor,
+ /* .clear = */ ggml_backend_sycl_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+// sycl buffer type
+struct ggml_backend_sycl_buffer_type_context {
+ int device;
+ std::string name;
+
+ // each buffer type has its own stream
+ queue_ptr stream = nullptr;
+};
+
+GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
+ ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
+
+ return ctx->name.c_str();
+}
+GGML_CALL static ggml_backend_buffer_t
+ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
+ size_t size) try {
+ ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
+ ggml_sycl_set_device(buft_ctx->device);
+ const queue_ptr stream = buft_ctx->stream;
+ size = std::max(size, (size_t)1); // syclMalloc returns null for size 0
+
+ void * dev_ptr;
+ SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device(
+ size, *stream)));
+ ggml_backend_sycl_buffer_context * ctx = new ggml_backend_sycl_buffer_context(buft_ctx->device, dev_ptr, buft_ctx->stream);
+ return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size);
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+ return 128;
+ UNUSED(buft);
+}
+
+static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+ return dpct::get_current_device().get_max_mem_alloc_size();
+
+ UNUSED(buft);
+}
+
+GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+ size_t size = ggml_nbytes(tensor);
+ int64_t ne0 = tensor->ne[0];
+
+ if (ggml_is_quantized(tensor->type)) {
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+ }
+
+ return size;
+
+ UNUSED(buft);
+}
+
+static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_sycl_buffer_type_name,
+ /* .alloc_buffer = */ ggml_backend_sycl_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_sycl_buffer_type_get_alignment,
+ /* .get_max_size = */ ggml_backend_sycl_buffer_type_get_max_size,
+ /* .get_alloc_size = */ ggml_backend_sycl_buffer_type_get_alloc_size,
+ /* .is_host = */ nullptr,
+};
+
+ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
+ static std::mutex mutex;
+ std::lock_guard<std::mutex> lock(mutex);
+
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
+
+ if (device>=ggml_sycl_info().device_count or device<0) {
+ printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
+ device, ggml_sycl_info().device_count-1);
+ GGML_ASSERT(device<ggml_sycl_info().device_count);
+ }
+ static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
+
+ static bool ggml_backend_sycl_buffer_type_initialized = false;
+
+ if (!ggml_backend_sycl_buffer_type_initialized) {
+ for (int i = 0; i < ggml_sycl_info().device_count; i++) {
+ auto & device_i = dpct::dev_mgr::instance().get_device(i);
+ queue_ptr stream = &(device_i.default_queue());
+ ggml_backend_sycl_buffer_types[i] = {
+ /* .iface = */ ggml_backend_sycl_buffer_type_interface,
+ /* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), stream},
+ };
+ }
+ ggml_backend_sycl_buffer_type_initialized = true;
+ }
+ return &ggml_backend_sycl_buffer_types[device];
+}
+
+ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_context * ctx) {
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
+
+ int device = ctx->device;
+ if (device>=ggml_sycl_info().device_count or device<0) {
+ printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
+ device, ggml_sycl_info().device_count-1);
+ GGML_ASSERT(device<ggml_sycl_info().device_count);
+ }
+ static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
+
+ static bool ggml_backend_sycl_buffer_type_initialized = false;
+
+ if (!ggml_backend_sycl_buffer_type_initialized) {
+ for (int i = 0; i < ggml_sycl_info().device_count; i++) {
+ ggml_backend_sycl_buffer_types[i] = {
+ /* .iface = */ ggml_backend_sycl_buffer_type_interface,
+ /* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), ctx->stream(i, 0)},
+ };
+ }
+ ggml_backend_sycl_buffer_type_initialized = true;
+ }
+ return &ggml_backend_sycl_buffer_types[device];
+}
+
+// sycl split buffer type
+static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split, int id) {
+ const int64_t nrows = ggml_nrows(tensor);
+ const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
+
+ *row_low = id == 0 ? 0 : nrows*tensor_split[id];
+ *row_low -= *row_low % rounding;
+ if (id == ggml_sycl_info().device_count - 1) {
+ *row_high = nrows;
+ } else {
+ *row_high = nrows*tensor_split[id + 1];
+ *row_high -= *row_high % rounding;
+ }
+}
+
+struct ggml_backend_sycl_split_buffer_context {
+ ~ggml_backend_sycl_split_buffer_context() try {
+ for (ggml_tensor_extra_gpu * extra : tensor_extras) {
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
+ if (extra->events[i][is] != nullptr) {
+ /*
+ DPCT1009:206: SYCL uses exceptions to report errors and
+ does not use the error codes. The original code was
+ commented out and a warning string was inserted. You
+ need to rewrite this code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ dpct::destroy_event(extra->events[i][is])));
+ }
+ }
+ if (extra->data_device[i] != nullptr) {
+ /*
+ DPCT1009:207: SYCL uses exceptions to report errors and does
+ not use the error codes. The original code was commented out
+ and a warning string was inserted. You need to rewrite this
+ code.
+ */
+ ggml_sycl_set_device(i);
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(
+ extra->data_device[i], *(streams[i]))));
+ }
+ }
+ delete extra;
+ }
+ }
+ catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+ }
+
+ std::vector<ggml_tensor_extra_gpu *> tensor_extras;
+ std::vector<queue_ptr> streams;
+};
+
+GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
+ return GGML_SYCL_NAME "_Split";
+
+ UNUSED(buffer);
+}
+
+static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
+ return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
+}
+
+GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
+ delete ctx;
+}
+
+GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
+ // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
+ return (void *)0x1000;
+
+ UNUSED(buffer);
+}
+
+GGML_CALL static void
+ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
+ ggml_tensor *tensor) try {
+ GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
+
+ ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
+
+ const int64_t ne0 = tensor->ne[0];
+
+ ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
+
+ ctx->tensor_extras.push_back(extra);
+ ctx->streams.push_back(&(dpct::get_current_device().default_queue()));
+
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
+
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
+
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
+ const size_t original_size = size;
+
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+
+ // FIXME: do not crash if cudaMalloc fails
+ // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
+ ggml_sycl_set_device(i);
+ const queue_ptr stream = ctx->streams[i];
+ char * buf;
+ /*
+ DPCT1009:208: SYCL uses exceptions to report errors and does not use the
+ error codes. The original code was commented out and a warning string
+ was inserted. You need to rewrite this code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device(
+ size, *stream)));
+
+ // set padding to 0 to avoid possible NaN values
+ if (size > original_size) {
+ /*
+ DPCT1009:209: SYCL uses exceptions to report errors and does not use
+ the error codes. The original code was commented out and a warning
+ string was inserted. You need to rewrite this code.
+ */
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ (*stream)
+ .memset(buf + original_size, 0, size - original_size)
+ .wait()));
+ }
+
+ extra->data_device[i] = buf;
+
+ for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
+ /*
+ DPCT1009:210: SYCL uses exceptions to report errors and does not use
+ the error codes. The original code was commented out and a warning
+ string was inserted. You need to rewrite this code.
+ */
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(extra->events[i][is] = new sycl::event()));
+ }
+ }
+ tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
+ tensor->extra = extra;
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_CALL static void
+ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
+ ggml_tensor *tensor, const void *data,
+ size_t offset, size_t size) try {
+ // split tensors must always be set in their entirety at once
+ GGML_ASSERT(offset == 0);
+ GGML_ASSERT(size == ggml_nbytes(tensor));
+
+ ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
+
+ const int64_t ne0 = tensor->ne[0];
+ const size_t nb1 = tensor->nb[1];
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
+
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
+
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
+
+ const size_t offset_split = row_low*nb1;
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
+ const size_t original_size = size;
+
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+
+ const char * buf_host = (const char *)data + offset_split;
+ /*
+ DPCT1009:211: SYCL uses exceptions to report errors and does not use the
+ error codes. The original code was commented out and a warning string
+ was inserted. You need to rewrite this code.
+ */
+ ggml_sycl_set_device(i);
+ const queue_ptr stream = ctx->streams[i];
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ (*stream)
+ .memcpy(extra->data_device[i], buf_host, original_size)
+ .wait()));
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_CALL static void
+ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
+ const ggml_tensor *tensor, void *data,
+ size_t offset, size_t size) try {
+ // split tensors must always be set in their entirety at once
+ GGML_ASSERT(offset == 0);
+ GGML_ASSERT(size == ggml_nbytes(tensor));
+
+ ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
+
+ const int64_t ne0 = tensor->ne[0];
+ const size_t nb1 = tensor->nb[1];
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
+
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
+
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
+
+ const size_t offset_split = row_low*nb1;
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
+ const size_t original_size = size;
+
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+
+ char * buf_host = (char *)data + offset_split;
+ /*
+ DPCT1009:212: SYCL uses exceptions to report errors and does not use the
+ error codes. The original code was commented out and a warning string
+ was inserted. You need to rewrite this code.
+ */
+ ggml_sycl_set_device(i);
+ const queue_ptr stream = ctx->streams[i];
+ SYCL_CHECK(CHECK_TRY_ERROR(
+ (*stream)
+ .memcpy(buf_host, extra->data_device[i], original_size)
+ .wait()));
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ UNUSED(buffer);
+ UNUSED(value);
+}
+
+static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = {
+ /* .get_name = */ ggml_backend_sycl_split_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_sycl_split_buffer_free_buffer,
+ /* .get_base = */ ggml_backend_sycl_split_buffer_get_base,
+ /* .init_tensor = */ ggml_backend_sycl_split_buffer_init_tensor,
+ /* .set_tensor = */ ggml_backend_sycl_split_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_sycl_split_buffer_get_tensor,
+ /* .cpy_tensor = */ NULL,
+ /* .clear = */ ggml_backend_sycl_split_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
+ return GGML_SYCL_NAME "_Split";
+
+ UNUSED(buft);
+}
+
+GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
+ // instead, we allocate them for each tensor separately in init_tensor
+ // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
+ // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
+ ggml_backend_sycl_split_buffer_context * ctx = new ggml_backend_sycl_split_buffer_context();
+
+ return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size);
+}
+
+GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+ return 128;
+ UNUSED(buft);
+}
+
+GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+ ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context;
+
+ size_t total_size = 0;
+
+ const int64_t ne0 = tensor->ne[0];
+
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, i);
+
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
+
+ total_size += ggml_nbytes_split(tensor, nrows_split);
+
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+ }
+
+ return total_size;
+}
+
+GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+ return false;
+
+ UNUSED(buft);
+}
+
+static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_sycl_split_buffer_type_name,
+ /* .alloc_buffer = */ ggml_backend_sycl_split_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_sycl_split_buffer_type_get_alignment,
+ /* .get_max_size = */ NULL, // defaults to SIZE_MAX
+ /* .get_alloc_size = */ ggml_backend_sycl_split_buffer_type_get_alloc_size,
+ /* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host,
+};
+
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
+ static std::mutex mutex;
+ std::lock_guard<std::mutex> lock(mutex);
+
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_split_buffer_type\n");
+ ggml_check_sycl();
+ // FIXME: this is not thread safe
+ static std::map<std::array<float, GGML_SYCL_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
+
+ std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split_arr = {};
+
+ bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_SYCL_MAX_DEVICES, [](float x) { return x == 0.0f; });
+ if (all_zero) {
+ tensor_split_arr = ggml_sycl_info().default_tensor_split;
+ } else {
+ float split_sum = 0.0f;
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ tensor_split_arr[i] = split_sum;
+ split_sum += tensor_split[i];
+ }
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
+ tensor_split_arr[i] /= split_sum;
+ }
+ }
+
+ auto it = buft_map.find(tensor_split_arr);
+ if (it != buft_map.end()) {
+ return &it->second;
+ }
+
+ struct ggml_backend_buffer_type buft {
+ /* .iface = */ ggml_backend_sycl_split_buffer_type_interface,
+ /* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr},
+ };
+
+ auto result = buft_map.emplace(tensor_split_arr, buft);
+ return &result.first->second;
+}
+
+// host buffer type
+
+GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+ return GGML_SYCL_NAME "_Host";
+
+ UNUSED(buft);
+}
+
+GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
+ return GGML_SYCL_NAME "_Host";
+
+ UNUSED(buffer);
+}
+
+static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_sycl_host_free(buffer->context);
+}
+
+static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ void * ptr = ggml_sycl_host_malloc(size);
+
+ if (ptr == nullptr) {
+ // fallback to cpu buffer
+ return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
+ }
+
+ // FIXME: this is a hack to avoid having to implement a new buffer type
+ ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
+ buffer->buft = buft;
+ buffer->iface.get_name = ggml_backend_sycl_host_buffer_name;
+ buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer;
+
+ return buffer;
+}
+
+ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_host_buffer_type\n");
+ static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_type_host = {
+ /* .iface = */ {
+ /* .get_name = */ ggml_backend_sycl_host_buffer_type_name,
+ /* .alloc_buffer = */ ggml_backend_sycl_host_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
+ /* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
+ /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
+ /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
+ },
+ /* .context = */ nullptr,
+ };
+
+ return &ggml_backend_sycl_buffer_type_host;
+}
+
+// backend
+
+GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
+
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
+
+ return sycl_ctx->name.c_str();
+}
+
+GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
+
+ delete sycl_ctx;
+ delete backend;
+}
+
+
+GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
+ return ggml_backend_sycl_buffer_type(sycl_ctx->device);
+}
+
+GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
+ ggml_tensor *tensor,
+ const void *data, size_t offset,
+ size_t size) try {
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
+ ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
+
+ GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
+ const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
+ SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
+ (char *)tensor->data + offset, data, size).wait()));
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
+ const ggml_tensor *tensor,
+ void *data, size_t offset,
+ size_t size) try {
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
+ ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
+
+ GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
+ const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
+ SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
+ data, (const char *)tensor->data + offset, size).wait()));
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
+ const ggml_tensor *src,
+ ggml_tensor *dst) try {
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
+ if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
+ /*
+ DPCT1009:215: SYCL uses exceptions to report errors and does not use the
+ error codes. The original code was commented out and a warning string
+ was inserted. You need to rewrite this code.
+ */
+ const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
+ SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
+ dst->data, src->data, ggml_nbytes(dst)).wait()));
+ return true;
+ }
+
+ return false;
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
+ const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
+ SYCL_CHECK(CHECK_TRY_ERROR((stream)->wait()));
+
+ UNUSED(backend);
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
+ ggml_sycl_set_main_device(sycl_ctx->device);
+
+
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ ggml_tensor * node = cgraph->nodes[i];
+ if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
+ continue;
+ }
+#ifndef NDEBUG
+ assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ if (node->src[j] != nullptr) {
+ assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
+ }
+ }
+#endif
+ bool ok = ggml_sycl_compute_forward(*sycl_ctx, node);
+ if (!ok) {
+ fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
+ }
+ GGML_ASSERT(ok);
+ }
+
+ return GGML_STATUS_SUCCESS;
+}
+
+GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+ switch (op->op) {
+ case GGML_OP_UNARY:
+ switch (ggml_get_unary_op(op)) {
+ case GGML_UNARY_OP_GELU:
+ case GGML_UNARY_OP_SILU:
+ case GGML_UNARY_OP_RELU:
+ case GGML_UNARY_OP_HARDSIGMOID:
+ case GGML_UNARY_OP_HARDSWISH:
+ case GGML_UNARY_OP_GELU_QUICK:
+ case GGML_UNARY_OP_TANH:
+ return ggml_is_contiguous(op->src[0]);
+ default:
+ return false;
+ }
+ break;
+ case GGML_OP_MUL_MAT:
+ case GGML_OP_MUL_MAT_ID:
+ {
+ struct ggml_tensor * a;
+ struct ggml_tensor * b;
+ if (op->op == GGML_OP_MUL_MAT) {
+ a = op->src[0];
+ b = op->src[1];
+ } else {
+ a = op->src[2];
+ b = op->src[1];
+ }
+ if (a->ne[3] != b->ne[3]) {
+ return false;
+ }
+ ggml_type a_type = a->type;
+ if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS ||
+ a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S ||
+ a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ2_S ||
+ a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ1_M
+ ) {
+ if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
+ return false;
+ }
+ }
+ ggml_type src0_type = op->src[0]->type;
+ if (src0_type == GGML_TYPE_BF16) {
+ return false;
+ }
+ return true;
+ } break;
+ case GGML_OP_GET_ROWS:
+ {
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_F32:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ return true;
+ default:
+ return false;
+ }
+ } break;
+ case GGML_OP_CPY:
+ {
+ ggml_type src0_type = op->src[0]->type;
+ ggml_type src1_type = op->src[1]->type;
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
+ return true;
+ }
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
+ return true;
+ }
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
+ return true;
+ }
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
+ return true;
+ }
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
+ return true;
+ }
+ if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
+ return true;
+ }
+ if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
+ return true;
+ }
+ return false;
+ } break;
+ case GGML_OP_CONCAT:
+ {
+ ggml_type src0_type = op->src[0]->type;
+ int dim = op->op_params[0];
+ return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16 && dim == 2;
+ } break;
+ case GGML_OP_DUP:
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_REPEAT:
+ case GGML_OP_VIEW:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_NORM:
+ case GGML_OP_ADD:
+ case GGML_OP_MUL:
+ case GGML_OP_DIV:
+ case GGML_OP_RMS_NORM:
+ case GGML_OP_SCALE:
+ case GGML_OP_SQR:
+ case GGML_OP_CLAMP:
+ case GGML_OP_CONT:
+ case GGML_OP_DIAG_MASK_INF:
+ case GGML_OP_SOFT_MAX:
+ return true;
+ case GGML_OP_ROPE:
+ return ggml_is_contiguous(op->src[0]);
+ case GGML_OP_IM2COL:
+ case GGML_OP_POOL_2D:
+ case GGML_OP_SUM_ROWS:
+ case GGML_OP_ARGSORT:
+ case GGML_OP_ACC:
+ case GGML_OP_GROUP_NORM:
+ case GGML_OP_UPSCALE:
+ case GGML_OP_PAD:
+ case GGML_OP_LEAKY_RELU:
+ return true;
+ default:
+ return false;
+ }
+
+ UNUSED(backend);
+}
+
+GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
+ const int min_batch_size = 32;
+ return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID;
+ GGML_UNUSED(backend);
+}
+
+GGML_CALL static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+ if (buft->iface.get_name != ggml_backend_sycl_buffer_type_name) {
+ return false;
+ }
+ ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
+ return buft_ctx->device == sycl_ctx->device;
+}
+
+static ggml_backend_i ggml_backend_sycl_interface = {
+ /* .get_name = */ ggml_backend_sycl_name,
+ /* .free = */ ggml_backend_sycl_free,
+ /* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type,
+ /* .set_tensor_async = */ ggml_backend_sycl_set_tensor_async,
+ /* .get_tensor_async = */ ggml_backend_sycl_get_tensor_async,
+ /* .cpy_tensor_async = */ NULL, //ggml_backend_sycl_cpy_tensor_async, // TODO: update for the new interface
+ /* .synchronize = */ ggml_backend_sycl_synchronize,
+ /* .graph_plan_create = */ NULL,
+ /* .graph_plan_free = */ NULL,
+ /* .graph_plan_update = */ NULL,
+ /* .graph_plan_compute = */ NULL,
+ /* .graph_compute = */ ggml_backend_sycl_graph_compute,
+ /* .supports_op = */ ggml_backend_sycl_supports_op,
+ /* .supports_buft = */ ggml_backend_sycl_supports_buft,
+ /* .offload_op = */ ggml_backend_sycl_offload_op,
+ /* .event_new = */ NULL,
+ /* .event_free = */ NULL,
+ /* .event_record = */ NULL,
+ /* .event_wait = */ NULL,
+ /* .event_synchronize = */ NULL,
+};
+
+static ggml_guid_t ggml_backend_sycl_guid() {
+ static ggml_guid guid = { 0x58, 0x05, 0x13, 0x8f, 0xcd, 0x3a, 0x61, 0x9d, 0xe7, 0xcd, 0x98, 0xa9, 0x03, 0xfd, 0x7c, 0x53 };
+ return &guid;
+}
+
+GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n");
+ ggml_check_sycl();
+
+ check_allow_gpu_index(device);
+
+ ggml_backend_sycl_context * ctx = new ggml_backend_sycl_context(device);
+ if (ctx == nullptr) {
+ fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
+ return nullptr;
+ };
+
+ ggml_backend_t sycl_backend = new ggml_backend {
+ /* .guid = */ ggml_backend_sycl_guid(),
+ /* .interface = */ ggml_backend_sycl_interface,
+ /* .context = */ ctx
+ };
+
+ return sycl_backend;
+}
+
+bool ggml_backend_is_sycl(ggml_backend_t backend) {
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
+}
+
+GGML_CALL int ggml_backend_sycl_get_device_count() {
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n");
+ return ggml_sycl_info().device_count;
+}
+
+GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
+ ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
+ return sycl_backend;
+
+ UNUSED(params);
+}
+
+extern "C" int ggml_backend_sycl_reg_devices();
+
+int ggml_backend_sycl_reg_devices() {
+ assert(ggml_sycl_info().device_count>0);
+ for (int i = 0; i < ggml_sycl_info().device_count; i++) {
+ char name[128];
+ snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
+ ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
+ }
+ return ggml_sycl_info().device_count;
+}