summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-sycl/softmax.cpp
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/src/ggml-sycl/softmax.cpp
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml-sycl/softmax.cpp')
-rw-r--r--ggml/src/ggml-sycl/softmax.cpp251
1 files changed, 251 insertions, 0 deletions
diff --git a/ggml/src/ggml-sycl/softmax.cpp b/ggml/src/ggml-sycl/softmax.cpp
new file mode 100644
index 00000000..17a542e4
--- /dev/null
+++ b/ggml/src/ggml-sycl/softmax.cpp
@@ -0,0 +1,251 @@
+#include "norm.hpp"
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
+ const int nrows_y, const float scale, const float max_bias, const float m0,
+ const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
+ const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
+
+ const int tid = item_ct1.get_local_id(2);
+ const int rowx = item_ct1.get_group(2);
+ const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
+
+ const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
+
+ const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ const int nthreads = block_size;
+ const int nwarps = nthreads / WARP_SIZE;
+ int nreduce = nwarps / WARP_SIZE;
+ float slope = 1.0f;
+
+ // ALiBi
+ if (max_bias > 0.0f) {
+ const uint32_t h = rowx/nrows_y; // head index
+
+ const float base = h < n_head_log2 ? m0 : m1;
+ const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+ slope = sycl::pow(base, float(exp));
+ }
+
+ float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
+ float max_val = -INFINITY;
+
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const int ix = rowx*ncols + col;
+ const int iy = rowy*ncols + col;
+
+ const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
+
+ vals[col] = val;
+ max_val = sycl::max(max_val, val);
+ }
+
+ // find the max value in the block
+ max_val = warp_reduce_max(max_val, item_ct1);
+ if (block_size > WARP_SIZE) {
+ if (warp_id == 0) {
+ buf[lane_id] = -INFINITY;
+ for (size_t i = 1; i < nreduce; i += 1)
+ buf[lane_id + i * WARP_SIZE] = -INFINITY;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ if (lane_id == 0) {
+ buf[warp_id] = max_val;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ max_val = buf[lane_id];
+ for (size_t i = 1; i < nreduce; i += 1)
+ {
+ max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]);
+ }
+ max_val = warp_reduce_max(max_val, item_ct1);
+ }
+
+ float tmp = 0.f;
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const float val = sycl::native::exp(vals[col] - max_val);
+ tmp += val;
+ vals[col] = val;
+ }
+
+ // find the sum of exps in the block
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ if (warp_id == 0) {
+ buf[lane_id] = 0.f;
+ for (size_t i = 1; i < nreduce; i += 1)
+ buf[lane_id + i * WARP_SIZE] = 0.f;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ if (lane_id == 0) {
+ buf[warp_id] = tmp;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ tmp = buf[lane_id];
+ for (size_t i = 1; i < nreduce; i += 1)
+ {
+ tmp += buf[lane_id + i * WARP_SIZE];
+ }
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ }
+
+ const float inv_sum = 1.f / tmp;
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ return;
+ }
+
+ const int idst = rowx*ncols + col;
+ dst[idst] = vals[col] * inv_sum;
+ }
+}
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
+ const int nrows_y, const float scale, const float max_bias, const float m0,
+ const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
+ const size_t n_local_scratch, queue_ptr stream) {
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
+ nrows_y, scale, max_bias, m0,
+ m1, n_head_log2, item_ct1,
+ get_pointer(local_buf_acc));
+ });
+ });
+}
+
+static void soft_max_f32_sycl(const float * x, const float * mask,
+ float * dst, const int ncols_x, const int nrows_x,
+ const int nrows_y, const float scale, const float max_bias,
+ queue_ptr stream, int device) {
+ int nth = WARP_SIZE;
+ int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
+ while (nth < ncols_x && nth < max_block_size) nth *= 2;
+ if (nth>max_block_size) nth = max_block_size;
+
+ const sycl::range<3> block_dims(1, 1, nth);
+ const sycl::range<3> block_nums(1, 1, nrows_x);
+ const size_t n_val_tmp = nth / WARP_SIZE;
+ const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + n_val_tmp);
+
+ const uint32_t n_head_kv = nrows_x/nrows_y;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
+ if (n_local_scratch*sizeof(float) < local_mem_size) {
+ if (ncols_x > max_block_size) {
+ soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ return;
+ }
+ switch (ncols_x) {
+ case 32:
+ soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 64:
+ soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 128:
+ soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 256:
+ soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 512:
+ soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 1024:
+ soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 2048:
+ soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 4096:
+ soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ default:
+ soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ }
+ } else {
+ soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, WARP_SIZE, stream);
+ }
+}
+
+void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
+#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
+ GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows_x = ggml_nrows(src0);
+ const int64_t nrows_y = src0->ne[1];
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, dst->op_params + 1, sizeof(float));
+
+ soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
+ nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
+}