diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/src/ggml-sycl/softmax.cpp | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml-sycl/softmax.cpp')
-rw-r--r-- | ggml/src/ggml-sycl/softmax.cpp | 251 |
1 files changed, 251 insertions, 0 deletions
diff --git a/ggml/src/ggml-sycl/softmax.cpp b/ggml/src/ggml-sycl/softmax.cpp new file mode 100644 index 00000000..17a542e4 --- /dev/null +++ b/ggml/src/ggml-sycl/softmax.cpp @@ -0,0 +1,251 @@ +#include "norm.hpp" + +template <bool vals_smem, int ncols_template, int block_size_template> +static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par, + const int nrows_y, const float scale, const float max_bias, const float m0, + const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) { + const int ncols = ncols_template == 0 ? ncols_par : ncols_template; + + const int tid = item_ct1.get_local_id(2); + const int rowx = item_ct1.get_group(2); + const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension + + const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template; + + const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; + const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; + const int nthreads = block_size; + const int nwarps = nthreads / WARP_SIZE; + int nreduce = nwarps / WARP_SIZE; + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + const uint32_t h = rowx/nrows_y; // head index + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = sycl::pow(base, float(exp)); + } + + float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols; + float max_val = -INFINITY; + + for (int col0 = 0; col0 < ncols; col0 += block_size) { + const int col = col0 + tid; + + if (ncols_template == 0 && col >= ncols) { + break; + } + + const int ix = rowx*ncols + col; + const int iy = rowy*ncols + col; + + const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f); + + vals[col] = val; + max_val = sycl::max(max_val, val); + } + + // find the max value in the block + max_val = warp_reduce_max(max_val, item_ct1); + if (block_size > WARP_SIZE) { + if (warp_id == 0) { + buf[lane_id] = -INFINITY; + for (size_t i = 1; i < nreduce; i += 1) + buf[lane_id + i * WARP_SIZE] = -INFINITY; + } + item_ct1.barrier(sycl::access::fence_space::local_space); + + if (lane_id == 0) { + buf[warp_id] = max_val; + } + item_ct1.barrier(sycl::access::fence_space::local_space); + max_val = buf[lane_id]; + for (size_t i = 1; i < nreduce; i += 1) + { + max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]); + } + max_val = warp_reduce_max(max_val, item_ct1); + } + + float tmp = 0.f; +#pragma unroll + for (int col0 = 0; col0 < ncols; col0 += block_size) { + const int col = col0 + tid; + if (ncols_template == 0 && col >= ncols) { + break; + } + + const float val = sycl::native::exp(vals[col] - max_val); + tmp += val; + vals[col] = val; + } + + // find the sum of exps in the block + tmp = warp_reduce_sum(tmp, item_ct1); + if (block_size > WARP_SIZE) { + item_ct1.barrier(sycl::access::fence_space::local_space); + if (warp_id == 0) { + buf[lane_id] = 0.f; + for (size_t i = 1; i < nreduce; i += 1) + buf[lane_id + i * WARP_SIZE] = 0.f; + } + item_ct1.barrier(sycl::access::fence_space::local_space); + + if (lane_id == 0) { + buf[warp_id] = tmp; + } + item_ct1.barrier(sycl::access::fence_space::local_space); + + tmp = buf[lane_id]; + for (size_t i = 1; i < nreduce; i += 1) + { + tmp += buf[lane_id + i * WARP_SIZE]; + } + tmp = warp_reduce_sum(tmp, item_ct1); + } + + const float inv_sum = 1.f / tmp; + +#pragma unroll + for (int col0 = 0; col0 < ncols; col0 += block_size) { + const int col = col0 + tid; + + if (ncols_template == 0 && col >= ncols) { + return; + } + + const int idst = rowx*ncols + col; + dst[idst] = vals[col] * inv_sum; + } +} + +template <bool vals_smem, int ncols_template, int block_size_template> +static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par, + const int nrows_y, const float scale, const float max_bias, const float m0, + const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims, + const size_t n_local_scratch, queue_ptr stream) { + stream->submit([&](sycl::handler &cgh) { + sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh); + + cgh.parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par, + nrows_y, scale, max_bias, m0, + m1, n_head_log2, item_ct1, + get_pointer(local_buf_acc)); + }); + }); +} + +static void soft_max_f32_sycl(const float * x, const float * mask, + float * dst, const int ncols_x, const int nrows_x, + const int nrows_y, const float scale, const float max_bias, + queue_ptr stream, int device) { + int nth = WARP_SIZE; + int max_block_size = ggml_sycl_info().max_work_group_sizes[device]; + while (nth < ncols_x && nth < max_block_size) nth *= 2; + if (nth>max_block_size) nth = max_block_size; + + const sycl::range<3> block_dims(1, 1, nth); + const sycl::range<3> block_nums(1, 1, nrows_x); + const size_t n_val_tmp = nth / WARP_SIZE; + const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + n_val_tmp); + + const uint32_t n_head_kv = nrows_x/nrows_y; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>(); + if (n_local_scratch*sizeof(float) < local_mem_size) { + if (ncols_x > max_block_size) { + soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + return; + } + switch (ncols_x) { + case 32: + soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 64: + soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 128: + soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 256: + soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 512: + soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 1024: + soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 2048: + soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 4096: + soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + default: + soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + } + } else { + soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, WARP_SIZE, stream); + } +} + +void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, + const ggml_tensor *src1, ggml_tensor *dst, + const float *src0_dd, const float *src1_dd, + float *dst_dd, + const queue_ptr &main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + +#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") + GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional + + const int64_t ne00 = src0->ne[0]; + const int64_t nrows_x = ggml_nrows(src0); + const int64_t nrows_y = src0->ne[1]; + + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, dst->op_params + 1, sizeof(float)); + + soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, + nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device); +} |