diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2024-12-14 09:24:30 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-12-14 09:24:30 +0100 |
commit | 20758edcae65213b2f575b6d23dfea67ad9dd0e0 (patch) | |
tree | f9f32d541da8bb945a45bbf473b9295496ec5c2b /ggml/src/ggml.c | |
parent | 12f962dd2494b743deb1c671974a591fdef1f003 (diff) |
Q8_K_R8: Fastest quantized matrix multiplications (#141)
* q8_k_r8: fastest matrix multiplication known to human kind
We get PP-512(LLaMA-3.1-8B) = 370 t/s on a Ryzen-7950X!
* q8_k_r8: AVX2
I was worried that we don't have enough vector registrers on
AVX2, but it looks like it handles it just fine. We get
PP-512(LLaMA-3.1-8B) = 354 t/s on a Ryzen-5975WX.
Slightly slower than the Zen4 version with double the threads,
but still a huge upgrade compared to Q8_0_R4.
* q8_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 159.2 t/s.
Compare this to the 128 t/s we have fr Q8_0_R4.
* q8_k_r4: go to signed ints
Why?
* On AVX2 _mm256_maddubs_epi16() may overflow, so we need to
stay within the signed int range and use _mm256_sign_epi8.
Not yet tested on the AVX2 comp, vut expect major slowdown.
* It is almost 10% faster on ARM_NEON. Somehow the veorrq_u8()
needed tto convert from unsigned to signed seems to be extremely
slow on the M2-Max
* We only lose ~0.5% in oerformance on Zen4 (there the exclusive
or that we now use to convert fro signed to unsigned seems to be
much faster than on M2-Max)
* Shutup useless compiler warnings
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r-- | ggml/src/ggml.c | 31 |
1 files changed, 31 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 26ca7991..772c70c4 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -979,6 +979,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .nrows = 1, .row_meta_size = 0, }, + [GGML_TYPE_Q8_K_R8] = { + .type_name = "q8_k_r8", + .blck_size = QK_K, + .type_size = sizeof(block_q8_k_r8)/8, + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q8_k_r8, + .from_float = quantize_row_q8_k_r8, + .from_float_ref = (ggml_from_float_t) quantize_row_q8_k_r8_ref, + .vec_dot = vec_dot_q8_k_r8_q8_k, + .vec_dot_type = GGML_TYPE_Q8_KR8, + .nrows = 1, + .row_meta_size = 0, + }, [GGML_TYPE_IQ2_XXS] = { .type_name = "iq2_xxs", .blck_size = QK_K, @@ -1197,6 +1210,14 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .from_float = quantize_row_q8_K32, .row_meta_size = 0, }, + [GGML_TYPE_Q8_KR8] = { + .type_name = "q8_KR8", + .blck_size = QK_K, + .type_size = sizeof(block_q8_K), + .is_quantized = true, + .from_float = quantize_row_q8_KR8, + .row_meta_size = 0, + }, [GGML_TYPE_BF16] = { .type_name = "bf16", .blck_size = 1, @@ -4105,6 +4126,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_Q5_K_R4: wtype = GGML_TYPE_Q5_K_R4; break; case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break; case GGML_FTYPE_MOSTLY_Q6_K_R4: wtype = GGML_TYPE_Q6_K_R4; break; + case GGML_FTYPE_MOSTLY_Q8_K_R8: wtype = GGML_TYPE_Q8_K_R8; break; case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break; case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break; case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break; @@ -10641,6 +10663,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_Q5_K_R4: case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K_R4: + case GGML_TYPE_Q8_K_R8: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -11096,6 +11119,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_Q5_K_R4: case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K_R4: + case GGML_TYPE_Q8_K_R8: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -11248,6 +11272,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_Q5_K_R4: case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K_R4: + case GGML_TYPE_Q8_K_R8: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -14446,6 +14471,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_Q5_K_R4: case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K_R4: + case GGML_TYPE_Q8_K_R8: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -14838,6 +14864,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_Q5_K_R4: case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K_R4: + case GGML_TYPE_Q8_K_R8: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -15124,6 +15151,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_Q5_K_R4: case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K_R4: + case GGML_TYPE_Q8_K_R8: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -15737,6 +15765,8 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_Q5_K_R4: case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K_R4: + case GGML_TYPE_Q8_K_R8: + case GGML_TYPE_Q8_KR8: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -22578,6 +22608,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_Q5_K_R4: result = quantize_q5_k_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_Q6_K_R4: result = quantize_q6_k_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q8_K_R8: result = quantize_q8_k_r8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |