summaryrefslogtreecommitdiff
path: root/ggml/src/ggml.c
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-14 09:24:30 +0100
committerGitHub <noreply@github.com>2024-12-14 09:24:30 +0100
commit20758edcae65213b2f575b6d23dfea67ad9dd0e0 (patch)
treef9f32d541da8bb945a45bbf473b9295496ec5c2b /ggml/src/ggml.c
parent12f962dd2494b743deb1c671974a591fdef1f003 (diff)
Q8_K_R8: Fastest quantized matrix multiplications (#141)
* q8_k_r8: fastest matrix multiplication known to human kind We get PP-512(LLaMA-3.1-8B) = 370 t/s on a Ryzen-7950X! * q8_k_r8: AVX2 I was worried that we don't have enough vector registrers on AVX2, but it looks like it handles it just fine. We get PP-512(LLaMA-3.1-8B) = 354 t/s on a Ryzen-5975WX. Slightly slower than the Zen4 version with double the threads, but still a huge upgrade compared to Q8_0_R4. * q8_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 159.2 t/s. Compare this to the 128 t/s we have fr Q8_0_R4. * q8_k_r4: go to signed ints Why? * On AVX2 _mm256_maddubs_epi16() may overflow, so we need to stay within the signed int range and use _mm256_sign_epi8. Not yet tested on the AVX2 comp, vut expect major slowdown. * It is almost 10% faster on ARM_NEON. Somehow the veorrq_u8() needed tto convert from unsigned to signed seems to be extremely slow on the M2-Max * We only lose ~0.5% in oerformance on Zen4 (there the exclusive or that we now use to convert fro signed to unsigned seems to be much faster than on M2-Max) * Shutup useless compiler warnings --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r--ggml/src/ggml.c31
1 files changed, 31 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 26ca7991..772c70c4 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -979,6 +979,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.nrows = 1,
.row_meta_size = 0,
},
+ [GGML_TYPE_Q8_K_R8] = {
+ .type_name = "q8_k_r8",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_q8_k_r8)/8,
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q8_k_r8,
+ .from_float = quantize_row_q8_k_r8,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q8_k_r8_ref,
+ .vec_dot = vec_dot_q8_k_r8_q8_k,
+ .vec_dot_type = GGML_TYPE_Q8_KR8,
+ .nrows = 1,
+ .row_meta_size = 0,
+ },
[GGML_TYPE_IQ2_XXS] = {
.type_name = "iq2_xxs",
.blck_size = QK_K,
@@ -1197,6 +1210,14 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.from_float = quantize_row_q8_K32,
.row_meta_size = 0,
},
+ [GGML_TYPE_Q8_KR8] = {
+ .type_name = "q8_KR8",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_q8_K),
+ .is_quantized = true,
+ .from_float = quantize_row_q8_KR8,
+ .row_meta_size = 0,
+ },
[GGML_TYPE_BF16] = {
.type_name = "bf16",
.blck_size = 1,
@@ -4105,6 +4126,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
case GGML_FTYPE_MOSTLY_Q5_K_R4: wtype = GGML_TYPE_Q5_K_R4; break;
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
case GGML_FTYPE_MOSTLY_Q6_K_R4: wtype = GGML_TYPE_Q6_K_R4; break;
+ case GGML_FTYPE_MOSTLY_Q8_K_R8: wtype = GGML_TYPE_Q8_K_R8; break;
case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
@@ -10641,6 +10663,7 @@ static void ggml_compute_forward_add(
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q6_K_R4:
+ case GGML_TYPE_Q8_K_R8:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
@@ -11096,6 +11119,7 @@ static void ggml_compute_forward_add1(
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q6_K_R4:
+ case GGML_TYPE_Q8_K_R8:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
@@ -11248,6 +11272,7 @@ static void ggml_compute_forward_acc(
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q6_K_R4:
+ case GGML_TYPE_Q8_K_R8:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
@@ -14446,6 +14471,7 @@ static void ggml_compute_forward_out_prod(
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q6_K_R4:
+ case GGML_TYPE_Q8_K_R8:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
@@ -14838,6 +14864,7 @@ static void ggml_compute_forward_set(
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q6_K_R4:
+ case GGML_TYPE_Q8_K_R8:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
@@ -15124,6 +15151,7 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q6_K_R4:
+ case GGML_TYPE_Q8_K_R8:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
@@ -15737,6 +15765,8 @@ static void ggml_compute_forward_clamp(
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q6_K_R4:
+ case GGML_TYPE_Q8_K_R8:
+ case GGML_TYPE_Q8_KR8:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
@@ -22578,6 +22608,7 @@ size_t ggml_quantize_chunk(
case GGML_TYPE_Q5_K_R4: result = quantize_q5_k_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q6_K_R4: result = quantize_q6_k_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q8_K_R8: result = quantize_q8_k_r8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;