summaryrefslogtreecommitdiff
path: root/ggml/src/ggml.c
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2025-01-20 08:57:38 +0200
committerGitHub <noreply@github.com>2025-01-20 08:57:38 +0200
commit3c5f87225f0ddd379ab712ddb8ad0013c10167c2 (patch)
tree7f339e1e1fe99218065a297cbf2632dcce8804a9 /ggml/src/ggml.c
parent0b74397d596bbcdfba27299393406d2b6330b133 (diff)
More Flash Attention improvements (#173)
* FA: slightly faster V*softmax(K*Q)) on Zen4 * FA: it is also faster on AVX2 and ARM_NEON * Deleted forgotten commented out code * FA: slightly faster V*softmax(K*Q)) also for fp16 K-cache * FA: slightly faster V*softmax(K*Q)) on Zen4 We now get 130.9 t/s for a context of 32k tokens. * FA: don't store sum scaling factor in SIMD registers * FA: timing * FA: faster q8_0 cache via run-time-repacking On Zen4 q8_0 KV-cache now slightly outperforms BF16. We get 134 t/s for 32k tokens, which is ~30% better than the main branch, and ~18% better than the last commit. We simply repack the K-cache to q8_0_r4 before the K*Q multiplication and use the q8_0_r4 x q8_0_x4 matrix multiplication template. * FA: Fix AVX2 * FA: fix ARN_NEON * FA: vectorize q8_0 -> q8_0_r4 repacking also on NEON * FA: dedicated mat mul for D = 128 also for ARM_NEON * FA: turn off performance timer --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r--ggml/src/ggml.c23
1 files changed, 14 insertions, 9 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index bcb8bf41..b3c8a951 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -17471,25 +17471,30 @@ static void ggml_compute_forward_flash_attn_ext_f16(
#if GGML_USE_IQK_MULMAT
if (max_bias <= 0.0f && q->type == GGML_TYPE_F32 && mask && mask->type == GGML_TYPE_F16) {
- int64_t work_per_slice = D*nek1*neq1;
- int ntg = 1;
+ // I keep changing my mind what is the best strategy to split the threads when processing
+ // multiple heads. This is my current thinking, the commented out code below was the previous.
+ int ntg = nth/simple_gcd(neq2*neq3, nth);
+ int64_t neq1g = (neq1 + ntg - 1)/ntg;
+ //int64_t work_per_slice = D*nek1*neq1;
+ //int ntg = 1;
//
// When neq1 is large, it is better to have more than one thread process one (iq2,iq3) matrix
// But we also want each thread to process the same amount of rows, so neq1 must be a multiple of
// the number of threads processing the (iq2, iq3) matrix.
//
- if (neq1 >= 8*nth) {
- if (nth%8 == 0 && neq1%8 == 0 && work_per_slice >= (1 << 23)) ntg = 8;
- else if (nth%4 == 0 && neq1%4 == 0 && work_per_slice >= (1 << 21)) ntg = 4;
- else if (nth%2 == 0 && neq1%2 == 0 && work_per_slice >= (1 << 19)) ntg = 2;
- }
+ //if (neq1 >= 8*nth) {
+ // if (nth%8 == 0 && neq1%8 == 0 && work_per_slice >= (1 << 23)) ntg = 8;
+ // else if (nth%4 == 0 && neq1%4 == 0 && work_per_slice >= (1 << 21)) ntg = 4;
+ // else if (nth%2 == 0 && neq1%2 == 0 && work_per_slice >= (1 << 19)) ntg = 2;
+ //}
int counter = 0;
for (int64_t iq3 = 0; iq3 < neq3; iq3++) {
for (int64_t iq2 = 0; iq2 < neq2; iq2++) {
if (counter++ % (nth/ntg) == ith/ntg) {
- int iq1 = (ith%ntg)*neq1/ntg;
+ int iq1 = (ith%ntg)*neq1g;
+ int this_neq1 = MIN(neq1g, neq1-iq1);
if (!iqk_flash_attn_noalibi(k->type, v->type,
- D, neq1/ntg, nek1, q->nb[1], k->nb[1], v->nb[1], mask->nb[1], ne1*nb1/sizeof(float),
+ D, this_neq1, nek1, q->nb[1], k->nb[1], v->nb[1], mask->nb[1], ne1*nb1/sizeof(float),
(const float *)((const char *)q->data + iq2*q->nb[2] + iq3*q->nb[3] + iq1*q->nb[1]),
(const void *)((const char *)k->data + iq2/rk2*k->nb[2] + iq3/rk3*k->nb[3]),
(const void *)((const char *)v->data + iq2/rv2*v->nb[2] + iq3/rv3*v->nb[3]),