summaryrefslogtreecommitdiff
path: root/ggml/src/ggml.c
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2025-07-14 18:55:08 +0200
committerGitHub <noreply@github.com>2025-07-14 18:55:08 +0200
commit45fae1a14444622478774f9a417e1d417af1ca46 (patch)
tree2609ef06be5640749834d4fc691446771ab29f42 /ggml/src/ggml.c
parentf5353047ef461e6fc9d527e09a06c9802c699929 (diff)
Adding IQ2_KL (#602)
* Experiments for 2.6875 bpw quants At least according to rmse, this is significantly better than q2_K, while using only 1/16 more bits per weight. * iq2_kl: basics * iq2_kl: CUDA dequantize * iq2_kl: small improvement in PPL Also check the two neighbouring values for the block scale and use the one that minimizes RMSE. * iq2_kl: MMQ Quite good: PP-512(L3-8B) = 8472 t/s. * iq2_kl: MMVQ We get PP-128(L3-8B) = 162 t/s. Which means that this is not quite as good as it should be as (almost) same bpq q2_K is at 170 t/s. * iq2_kl: Zen4 GEMM/GEMV Not particularly fast. I may need to think about rearranging the bits. * iq2_kl: better Zen4 * iq2_kl: convert/repack to q8_k_r8 (AVX2) * iq2_kl: AVX2 GEMM/GEMV * iq2_kl: WIP NEON The compiler started crashing!!! * iq2_kl: NEON Had to work around a compiler crash when using vzip2q_u8 using vqtbl2q_u8. * iq2_kl: convert/repack to q8_k_r8 (NEON) * iq2_kl: Metal dequantize * iq2_kl: Metal GEMV - pretty slow * iq2_kl: Metal GEMV - slightly better (40 t/s -> 44.5 t/s) * iq2_kl: Metal GEMV - slightly better (44.5 t/s -> 46.5 t/s) * iq2_kl: Metal GEMV - slightly better (46.5 t/s -> 47.2 t/s) * iq2_kl: slightly better Metal dequantize PP-512 goes to 476 t/s up from 466 t/s. * iq2_kl: slightly better Metal dequantize PP-512 goes to 492 t/s up from 476 t/s. * Add iq2_kl to constants.py --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r--ggml/src/ggml.c22
1 files changed, 22 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 2e6983df..dbb080f8 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -1669,6 +1669,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.nrows = 1,
.row_meta_size = 2,
},
+ [GGML_TYPE_IQ2_KL] = {
+ .type_name = "iq2_kl",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq2_kl),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq2_kl,
+ .from_float = quantize_row_iq2_kl,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq2_kl_ref,
+ .vec_dot = vec_dot_iq2_kl_q8_k,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ .row_meta_size = 2,
+ },
[GGML_TYPE_IQ4_K] = {
.type_name = "iq4_k",
.blck_size = QK_K,
@@ -4592,6 +4605,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
case GGML_FTYPE_MOSTLY_IQ4_KT: wtype = GGML_TYPE_IQ4_KT; break;
case GGML_FTYPE_MOSTLY_IQ3_K: wtype = GGML_TYPE_IQ3_K; break;
case GGML_FTYPE_MOSTLY_IQ3_KS: wtype = GGML_TYPE_IQ3_KS; break;
+ case GGML_FTYPE_MOSTLY_IQ2_KL: wtype = GGML_TYPE_IQ2_KL; break;
case GGML_FTYPE_MOSTLY_IQ4_K: wtype = GGML_TYPE_IQ4_K; break;
case GGML_FTYPE_MOSTLY_IQ3_K_R4: wtype = GGML_TYPE_IQ3_K_R4; break;
case GGML_FTYPE_MOSTLY_IQ4_K_R4: wtype = GGML_TYPE_IQ4_K_R4; break;
@@ -11362,6 +11376,7 @@ static void ggml_compute_forward_add(
case GGML_TYPE_IQ4_KT:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ3_KS:
+ case GGML_TYPE_IQ2_KL:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
@@ -11840,6 +11855,7 @@ static void ggml_compute_forward_add1(
case GGML_TYPE_IQ4_KT:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ3_KS:
+ case GGML_TYPE_IQ2_KL:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
@@ -12015,6 +12031,7 @@ static void ggml_compute_forward_acc(
case GGML_TYPE_IQ4_KT:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ3_KS:
+ case GGML_TYPE_IQ2_KL:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
@@ -15517,6 +15534,7 @@ static void ggml_compute_forward_out_prod(
case GGML_TYPE_IQ4_KT:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ3_KS:
+ case GGML_TYPE_IQ2_KL:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
@@ -15932,6 +15950,7 @@ static void ggml_compute_forward_set(
case GGML_TYPE_IQ4_KT:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ3_KS:
+ case GGML_TYPE_IQ2_KL:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
@@ -16253,6 +16272,7 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_IQ4_KT:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ3_KS:
+ case GGML_TYPE_IQ2_KL:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
@@ -16891,6 +16911,7 @@ static void ggml_compute_forward_clamp(
case GGML_TYPE_IQ4_KT:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ3_KS:
+ case GGML_TYPE_IQ2_KL:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
@@ -23965,6 +23986,7 @@ size_t ggml_quantize_chunk(
case GGML_TYPE_IQ4_KT: result = quantize_iq4_kt (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ3_K: result = quantize_iq3_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ3_KS: result = quantize_iq3_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ2_KL: result = quantize_iq2_kl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_K: result = quantize_iq4_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ3_K_R4:result = quantize_iq3_k_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_K_R4:result = quantize_iq4_k_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;