diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2024-12-02 07:25:39 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-12-02 07:25:39 +0100 |
commit | 6d0462d4a39085a9f9da04e0a5fc7cc9d4578818 (patch) | |
tree | b7fd71bda09bb8e2315feff8b6128ad0b7cbefc7 /ggml/src/ggml.c | |
parent | 8ad84b9fab9570c36220cb791f9a67a4d2c7fd2f (diff) |
IQ4_NL_X4 (#118)
* Adding iq4_nl_x4
Looks very promising - I get PP-512(LLaMA-3.1-8B) = 230 t/s
on the Ryzen-7950X! This is faster than any other quant and
~40% faster than iq4_nl.
* iq4_nl_x4: getting amazing
This Zen4 variant gets us to PP-512(LLaMA-3.1-8B) = 263 t/s!
* iq4_nl_x4: AVX2
Here we gain only 25% compared to iq4_nl
* iq4_nl_x4: NEON
On M2-Max we get PP-512(LLaMA-3.1-8B) = 109.7 t/s, up from
82.4 t/s for iq4_nl.
* iq4_nl_x4: minor NEON improvement and cleanup
This gets us to 110.3 t/s. In comparison,
IQ4_NL_4_4 in mainline llama.cpp achieves 92.3 t/s.
* iq4_nl_x4: NEON specialization for matrix x vector
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r-- | ggml/src/ggml.c | 26 |
1 files changed, 26 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 39218ff4..c975212e 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -1245,6 +1245,23 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .nrows = 1, .row_meta_size = 0, }, + [GGML_TYPE_IQ4_NL_X4] = { + .type_name = "iq4_nl_x4", + .blck_size = QK4_NL, + .type_size = sizeof(block_iq4_nl), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq4_nl_x4, + .from_float = quantize_row_iq4_nl_x4, + .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_x4_ref, + .vec_dot = vec_dot_iq4_nl_x4_q8_0, +#if GGML_USE_IQK_MULMAT && defined __AVX2__ + .vec_dot_type = GGML_TYPE_Q8_1, +#else + .vec_dot_type = GGML_TYPE_Q8_0, +#endif + .nrows = 1, + .row_meta_size = 0, + }, }; // For internal test use @@ -3903,6 +3920,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ1_BN: wtype = GGML_TYPE_IQ1_BN; break; case GGML_FTYPE_MOSTLY_IQ2_BN: wtype = GGML_TYPE_IQ2_BN; break; case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break; + case GGML_FTYPE_MOSTLY_IQ4_NL_X4: wtype = GGML_TYPE_IQ4_NL_X4;break; case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break; case GGML_FTYPE_MOSTLY_IQ4_KS: wtype = GGML_TYPE_IQ4_KS; break; case GGML_FTYPE_MOSTLY_IQ4_KSS: wtype = GGML_TYPE_IQ4_KSS; break; @@ -10426,6 +10444,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_NL_X4: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KSS: @@ -10868,6 +10887,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_NL_X4: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KSS: @@ -11007,6 +11027,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_NL_X4: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KSS: @@ -14192,6 +14213,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_NL_X4: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KSS: @@ -14571,6 +14593,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_NL_X4: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KSS: @@ -14844,6 +14867,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_NL_X4: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KSS: @@ -15444,6 +15468,7 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_NL_X4: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KSS: @@ -22270,6 +22295,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_IQ1_BN: result = quantize_iq1_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_BN: result = quantize_iq2_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ4_NL_X4: result = quantize_iq4_nl_x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_KS: result = quantize_iq4_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_KSS: result = quantize_iq4_kss(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |