summaryrefslogtreecommitdiff
path: root/ggml/src/ggml.c
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-02 07:25:39 +0100
committerGitHub <noreply@github.com>2024-12-02 07:25:39 +0100
commit6d0462d4a39085a9f9da04e0a5fc7cc9d4578818 (patch)
treeb7fd71bda09bb8e2315feff8b6128ad0b7cbefc7 /ggml/src/ggml.c
parent8ad84b9fab9570c36220cb791f9a67a4d2c7fd2f (diff)
IQ4_NL_X4 (#118)
* Adding iq4_nl_x4 Looks very promising - I get PP-512(LLaMA-3.1-8B) = 230 t/s on the Ryzen-7950X! This is faster than any other quant and ~40% faster than iq4_nl. * iq4_nl_x4: getting amazing This Zen4 variant gets us to PP-512(LLaMA-3.1-8B) = 263 t/s! * iq4_nl_x4: AVX2 Here we gain only 25% compared to iq4_nl * iq4_nl_x4: NEON On M2-Max we get PP-512(LLaMA-3.1-8B) = 109.7 t/s, up from 82.4 t/s for iq4_nl. * iq4_nl_x4: minor NEON improvement and cleanup This gets us to 110.3 t/s. In comparison, IQ4_NL_4_4 in mainline llama.cpp achieves 92.3 t/s. * iq4_nl_x4: NEON specialization for matrix x vector --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r--ggml/src/ggml.c26
1 files changed, 26 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 39218ff4..c975212e 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -1245,6 +1245,23 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.nrows = 1,
.row_meta_size = 0,
},
+ [GGML_TYPE_IQ4_NL_X4] = {
+ .type_name = "iq4_nl_x4",
+ .blck_size = QK4_NL,
+ .type_size = sizeof(block_iq4_nl),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq4_nl_x4,
+ .from_float = quantize_row_iq4_nl_x4,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_x4_ref,
+ .vec_dot = vec_dot_iq4_nl_x4_q8_0,
+#if GGML_USE_IQK_MULMAT && defined __AVX2__
+ .vec_dot_type = GGML_TYPE_Q8_1,
+#else
+ .vec_dot_type = GGML_TYPE_Q8_0,
+#endif
+ .nrows = 1,
+ .row_meta_size = 0,
+ },
};
// For internal test use
@@ -3903,6 +3920,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
case GGML_FTYPE_MOSTLY_IQ1_BN: wtype = GGML_TYPE_IQ1_BN; break;
case GGML_FTYPE_MOSTLY_IQ2_BN: wtype = GGML_TYPE_IQ2_BN; break;
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
+ case GGML_FTYPE_MOSTLY_IQ4_NL_X4: wtype = GGML_TYPE_IQ4_NL_X4;break;
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
case GGML_FTYPE_MOSTLY_IQ4_KS: wtype = GGML_TYPE_IQ4_KS; break;
case GGML_FTYPE_MOSTLY_IQ4_KSS: wtype = GGML_TYPE_IQ4_KSS; break;
@@ -10426,6 +10444,7 @@ static void ggml_compute_forward_add(
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_NL_X4:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_KSS:
@@ -10868,6 +10887,7 @@ static void ggml_compute_forward_add1(
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_NL_X4:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_KSS:
@@ -11007,6 +11027,7 @@ static void ggml_compute_forward_acc(
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_NL_X4:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_KSS:
@@ -14192,6 +14213,7 @@ static void ggml_compute_forward_out_prod(
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_NL_X4:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_KSS:
@@ -14571,6 +14593,7 @@ static void ggml_compute_forward_set(
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_NL_X4:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_KSS:
@@ -14844,6 +14867,7 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_NL_X4:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_KSS:
@@ -15444,6 +15468,7 @@ static void ggml_compute_forward_clamp(
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_NL_X4:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_KSS:
@@ -22270,6 +22295,7 @@ size_t ggml_quantize_chunk(
case GGML_TYPE_IQ1_BN: result = quantize_iq1_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_BN: result = quantize_iq2_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ4_NL_X4: result = quantize_iq4_nl_x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_KS: result = quantize_iq4_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_KSS: result = quantize_iq4_kss(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;