diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2024-10-16 15:18:26 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-10-16 15:18:26 +0300 |
commit | 76b97c80645362ac65a2e33043fd8d46bdaf8c56 (patch) | |
tree | b2b8ab9efb91a6ce4dd9d0fccbc9e11141ca1d80 /ggml/src/ggml.c | |
parent | 993ca95e9e3108f0352fa2a3384cab0775c7f7c1 (diff) |
Adding IQ4_KSS: 4.0 bpw quants (#89)
* iq4_kss: WIP
* iq4_kss: CUDA dequantize works
So we can run perplexity. Sadly, the result does not look good
on the bpw vs quantization error plot.
* iq4_kss: slightly better quantization
* iq4_kss: another small quantization improvement
* iq4_kss: CUDA works
TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B.
In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks.
I.e., the reduced model size more than offsets the additional
bit fiddling required for iq4_kss.
* iq4_kss: new bit arrangement - CUDA and Zen4 work
Did not lose performance on CUDA. Zen4 is decent, but not great:
PP-512(LLaMA-3.1-8B) = 163 t/s.
TG-128 is of course better than other 4-bit quants due to smaller model size.
We get 14.5 t/s @ 8 threads.
* iq4_kss: ARM_NEON. Predictably very slow
* iq4_kss: Metal
PP is not too bad - just 10% slower than q4_0.
But TG is 30% slower, i.e., predictably bad.
* iq4_kss: somewhat faster Metal dot product
45.75 t/s -> 48.75 t/s.
Still 22% slower than q4_0
* iq4_kss: AVX2
Bad, but better than I expected.
PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X.
I.e., with 32 AVX2 threads we get the performance of
16 Zen4 threads.
* iq4_kss: very slightly faster Metal dot product
48.7 t/s -> 49.3 t/s
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r-- | ggml/src/ggml.c | 22 |
1 files changed, 22 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index a9f795ae..35ed68d0 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -1100,6 +1100,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .nrows = 1, .row_meta_size = 4, }, + [GGML_TYPE_IQ4_KSS] = { + .type_name = "iq4_kss", + .blck_size = QK_K, + .type_size = sizeof(block_iq4_kss), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq4_kss, + .from_float = quantize_row_iq4_kss, + .from_float_ref = (ggml_from_float_t)quantize_row_iq4_kss_ref, + .vec_dot = vec_dot_iq4_kss_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + .row_meta_size = 4, + }, [GGML_TYPE_Q8_K] = { .type_name = "q8_K", .blck_size = QK_K, @@ -3918,6 +3931,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break; case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break; case GGML_FTYPE_MOSTLY_IQ4_KS: wtype = GGML_TYPE_IQ4_KS; break; + case GGML_FTYPE_MOSTLY_IQ4_KSS: wtype = GGML_TYPE_IQ4_KSS; break; case GGML_FTYPE_MOSTLY_IQ2_K: wtype = GGML_TYPE_IQ2_K; break; case GGML_FTYPE_MOSTLY_IQ2_KS: wtype = GGML_TYPE_IQ2_KS; break; case GGML_FTYPE_MOSTLY_IQ3_K: wtype = GGML_TYPE_IQ3_K; break; @@ -10419,6 +10433,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: + case GGML_TYPE_IQ4_KSS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: @@ -10809,6 +10824,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: + case GGML_TYPE_IQ4_KSS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: @@ -10949,6 +10965,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: + case GGML_TYPE_IQ4_KSS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: @@ -14135,6 +14152,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: + case GGML_TYPE_IQ4_KSS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: @@ -14515,6 +14533,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: + case GGML_TYPE_IQ4_KSS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: @@ -14789,6 +14808,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: + case GGML_TYPE_IQ4_KSS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: @@ -15390,6 +15410,7 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: + case GGML_TYPE_IQ4_KSS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: @@ -22208,6 +22229,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_KS: result = quantize_iq4_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ4_KSS: result = quantize_iq4_kss(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_K: result = quantize_iq2_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_KS: result = quantize_iq2_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ3_K: result = quantize_iq3_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |