summaryrefslogtreecommitdiff
path: root/ggml/src/ggml.c
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-10-16 15:18:26 +0300
committerGitHub <noreply@github.com>2024-10-16 15:18:26 +0300
commit76b97c80645362ac65a2e33043fd8d46bdaf8c56 (patch)
treeb2b8ab9efb91a6ce4dd9d0fccbc9e11141ca1d80 /ggml/src/ggml.c
parent993ca95e9e3108f0352fa2a3384cab0775c7f7c1 (diff)
Adding IQ4_KSS: 4.0 bpw quants (#89)
* iq4_kss: WIP * iq4_kss: CUDA dequantize works So we can run perplexity. Sadly, the result does not look good on the bpw vs quantization error plot. * iq4_kss: slightly better quantization * iq4_kss: another small quantization improvement * iq4_kss: CUDA works TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B. In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks. I.e., the reduced model size more than offsets the additional bit fiddling required for iq4_kss. * iq4_kss: new bit arrangement - CUDA and Zen4 work Did not lose performance on CUDA. Zen4 is decent, but not great: PP-512(LLaMA-3.1-8B) = 163 t/s. TG-128 is of course better than other 4-bit quants due to smaller model size. We get 14.5 t/s @ 8 threads. * iq4_kss: ARM_NEON. Predictably very slow * iq4_kss: Metal PP is not too bad - just 10% slower than q4_0. But TG is 30% slower, i.e., predictably bad. * iq4_kss: somewhat faster Metal dot product 45.75 t/s -> 48.75 t/s. Still 22% slower than q4_0 * iq4_kss: AVX2 Bad, but better than I expected. PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X. I.e., with 32 AVX2 threads we get the performance of 16 Zen4 threads. * iq4_kss: very slightly faster Metal dot product 48.7 t/s -> 49.3 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r--ggml/src/ggml.c22
1 files changed, 22 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index a9f795ae..35ed68d0 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -1100,6 +1100,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.nrows = 1,
.row_meta_size = 4,
},
+ [GGML_TYPE_IQ4_KSS] = {
+ .type_name = "iq4_kss",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq4_kss),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq4_kss,
+ .from_float = quantize_row_iq4_kss,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq4_kss_ref,
+ .vec_dot = vec_dot_iq4_kss_q8_k,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ .row_meta_size = 4,
+ },
[GGML_TYPE_Q8_K] = {
.type_name = "q8_K",
.blck_size = QK_K,
@@ -3918,6 +3931,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
case GGML_FTYPE_MOSTLY_IQ4_KS: wtype = GGML_TYPE_IQ4_KS; break;
+ case GGML_FTYPE_MOSTLY_IQ4_KSS: wtype = GGML_TYPE_IQ4_KSS; break;
case GGML_FTYPE_MOSTLY_IQ2_K: wtype = GGML_TYPE_IQ2_K; break;
case GGML_FTYPE_MOSTLY_IQ2_KS: wtype = GGML_TYPE_IQ2_KS; break;
case GGML_FTYPE_MOSTLY_IQ3_K: wtype = GGML_TYPE_IQ3_K; break;
@@ -10419,6 +10433,7 @@ static void ggml_compute_forward_add(
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
+ case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ3_K:
@@ -10809,6 +10824,7 @@ static void ggml_compute_forward_add1(
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
+ case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ3_K:
@@ -10949,6 +10965,7 @@ static void ggml_compute_forward_acc(
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
+ case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ3_K:
@@ -14135,6 +14152,7 @@ static void ggml_compute_forward_out_prod(
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
+ case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ3_K:
@@ -14515,6 +14533,7 @@ static void ggml_compute_forward_set(
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
+ case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ3_K:
@@ -14789,6 +14808,7 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
+ case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ3_K:
@@ -15390,6 +15410,7 @@ static void ggml_compute_forward_clamp(
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_KS:
+ case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ3_K:
@@ -22208,6 +22229,7 @@ size_t ggml_quantize_chunk(
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_KS: result = quantize_iq4_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ4_KSS: result = quantize_iq4_kss(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_K: result = quantize_iq2_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_KS: result = quantize_iq2_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ3_K: result = quantize_iq3_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;