diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-08-07 07:56:09 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-08-07 07:56:09 +0200 |
commit | a9f302ebe2373321c12b01d8760904901aa064a4 (patch) | |
tree | 7953bbff2ebd6bf9130cea52d17995aea3cd65d5 /ggml/src/ggml.c | |
parent | b409c153636d27473970abd3a9c9400b6287d400 (diff) |
Adding IQ2_TN for use with ternary models (#13)
* iq2_tn: TriLM specific 2.0625 bpw quantization
Quantize/dequantize/scale dot product.
I get 46 t/s for the TriLM-3.9B with any SIMD!
Finally a compiler doing a decent job auto-vectorizing the
scalar implementation.
* iq2_tn: AVX512
Just reusing the k-quants template gets us to PP-512 = 376 t/s,
TG-128 = 47.6 t/s for TriLM-3.9B.
* iq2_tn: AVX512
With this tweak we get to PP-512 = 431 t/s.
* iq2_tn: AVX512
With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads.
At 4 threads we saturate at 48.41 t/s, and then performance slowly
degrades with increasing number of threads.
* iq2_tn: AVX2
PP512 = 440 t/s on the Ryzen-5975WX.
We should be able to do better.
* iq2_tn: initial NEON version
* iq2_tn: NEON
For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s,
TG-128 = 75.5 t/s. This is in line with what we have for
iq2_bn ant 3.3B Bitnet.
* iq2_tn: Metal
For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s,
TG-128 = 98.5 t/s.
* iq2_tn: CUDA
For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s,
TG-128 = 299.2 t/s.
* iq2_tn: AVX2 PP improvement
We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX.
We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn.
Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would
expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something
that is not quite optimal in iq2_tn.
* iq2_tn: small NEON improvement
For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r-- | ggml/src/ggml.c | 21 |
1 files changed, 21 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 4ce9948d..5c817030 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -882,6 +882,18 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_K64, .nrows = 1, }, + [GGML_TYPE_IQ2_TN] = { + .type_name = "iq2_tn", + .blck_size = QK_K, + .type_size = sizeof(block_iq2_tn), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq2_tn, + .from_float = quantize_row_iq2_tn, + .from_float_ref = (ggml_from_float_t)quantize_row_iq2_tn_ref, + .vec_dot = vec_dot_iq2_tn_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, [GGML_TYPE_IQ4_NL] = { .type_name = "iq4_nl", .blck_size = QK4_NL, @@ -3375,6 +3387,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break; case GGML_FTYPE_MOSTLY_IQ1_BN: wtype = GGML_TYPE_IQ1_BN; break; case GGML_FTYPE_MOSTLY_IQ2_BN: wtype = GGML_TYPE_IQ2_BN; break; + case GGML_FTYPE_MOSTLY_IQ2_TN: wtype = GGML_TYPE_IQ2_TN; break; case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break; case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break; case GGML_FTYPE_MOSTLY_IQ2_K: wtype = GGML_TYPE_IQ2_K; break; @@ -9628,6 +9641,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: + case GGML_TYPE_IQ2_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ2_K: @@ -10012,6 +10026,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: + case GGML_TYPE_IQ2_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ2_K: @@ -10146,6 +10161,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: + case GGML_TYPE_IQ2_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ2_K: @@ -13069,6 +13085,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: + case GGML_TYPE_IQ2_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ2_K: @@ -13263,6 +13280,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: + case GGML_TYPE_IQ2_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ2_K: @@ -13531,6 +13549,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: + case GGML_TYPE_IQ2_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ2_K: @@ -14126,6 +14145,7 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ1_BN: case GGML_TYPE_IQ2_BN: + case GGML_TYPE_IQ2_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ2_K: @@ -20865,6 +20885,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ1_BN: result = quantize_iq1_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_BN: result = quantize_iq2_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ2_TN: result = quantize_iq2_tn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_K: result = quantize_iq2_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; |