summaryrefslogtreecommitdiff
path: root/ggml/src/ggml.c
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-08-07 07:56:09 +0200
committerGitHub <noreply@github.com>2024-08-07 07:56:09 +0200
commita9f302ebe2373321c12b01d8760904901aa064a4 (patch)
tree7953bbff2ebd6bf9130cea52d17995aea3cd65d5 /ggml/src/ggml.c
parentb409c153636d27473970abd3a9c9400b6287d400 (diff)
Adding IQ2_TN for use with ternary models (#13)
* iq2_tn: TriLM specific 2.0625 bpw quantization Quantize/dequantize/scale dot product. I get 46 t/s for the TriLM-3.9B with any SIMD! Finally a compiler doing a decent job auto-vectorizing the scalar implementation. * iq2_tn: AVX512 Just reusing the k-quants template gets us to PP-512 = 376 t/s, TG-128 = 47.6 t/s for TriLM-3.9B. * iq2_tn: AVX512 With this tweak we get to PP-512 = 431 t/s. * iq2_tn: AVX512 With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads. At 4 threads we saturate at 48.41 t/s, and then performance slowly degrades with increasing number of threads. * iq2_tn: AVX2 PP512 = 440 t/s on the Ryzen-5975WX. We should be able to do better. * iq2_tn: initial NEON version * iq2_tn: NEON For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s, TG-128 = 75.5 t/s. This is in line with what we have for iq2_bn ant 3.3B Bitnet. * iq2_tn: Metal For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s, TG-128 = 98.5 t/s. * iq2_tn: CUDA For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s, TG-128 = 299.2 t/s. * iq2_tn: AVX2 PP improvement We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX. We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn. Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something that is not quite optimal in iq2_tn. * iq2_tn: small NEON improvement For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r--ggml/src/ggml.c21
1 files changed, 21 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 4ce9948d..5c817030 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -882,6 +882,18 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_K64,
.nrows = 1,
},
+ [GGML_TYPE_IQ2_TN] = {
+ .type_name = "iq2_tn",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq2_tn),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq2_tn,
+ .from_float = quantize_row_iq2_tn,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq2_tn_ref,
+ .vec_dot = vec_dot_iq2_tn_q8_k,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
[GGML_TYPE_IQ4_NL] = {
.type_name = "iq4_nl",
.blck_size = QK4_NL,
@@ -3375,6 +3387,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
case GGML_FTYPE_MOSTLY_IQ1_BN: wtype = GGML_TYPE_IQ1_BN; break;
case GGML_FTYPE_MOSTLY_IQ2_BN: wtype = GGML_TYPE_IQ2_BN; break;
+ case GGML_FTYPE_MOSTLY_IQ2_TN: wtype = GGML_TYPE_IQ2_TN; break;
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
case GGML_FTYPE_MOSTLY_IQ2_K: wtype = GGML_TYPE_IQ2_K; break;
@@ -9628,6 +9641,7 @@ static void ggml_compute_forward_add(
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ2_TN:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ2_K:
@@ -10012,6 +10026,7 @@ static void ggml_compute_forward_add1(
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ2_TN:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ2_K:
@@ -10146,6 +10161,7 @@ static void ggml_compute_forward_acc(
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ2_TN:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ2_K:
@@ -13069,6 +13085,7 @@ static void ggml_compute_forward_out_prod(
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ2_TN:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ2_K:
@@ -13263,6 +13280,7 @@ static void ggml_compute_forward_set(
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ2_TN:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ2_K:
@@ -13531,6 +13549,7 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ2_TN:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ2_K:
@@ -14126,6 +14145,7 @@ static void ggml_compute_forward_clamp(
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ2_TN:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ2_K:
@@ -20865,6 +20885,7 @@ size_t ggml_quantize_chunk(
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ1_BN: result = quantize_iq1_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_BN: result = quantize_iq2_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ2_TN: result = quantize_iq2_tn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_K: result = quantize_iq2_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;