summaryrefslogtreecommitdiff
path: root/ggml/src/ggml.c
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2025-02-09 19:48:44 +0200
committerGitHub <noreply@github.com>2025-02-09 19:48:44 +0200
commitc12f73ba6153d162f36434cb48e36dd3649b7701 (patch)
tree3594697f680959c7130a3f109cd9e4abbc8d6e7d /ggml/src/ggml.c
parentcae2b81155fdad75b7beab3a835c438120412969 (diff)
Add optional MLA (#188)
* Deepseek MLA Optimizations Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> * Make MLA optional * Remove some unnecessary copies in the MLA attention * Deepseek MLA Optimizations V2 (#195) * Avoid allocating MHA KV cache when MLA is turned on * Added missing gguf-py file * Added final optimizations Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> * Make sure we do have wk_b and wv_b before enabling MLA --------- Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> * Use type_k and type_v to set the types of the MLA caches They were hard-coded at f16. On my Ryzen-7950X with native bf16 support I get a fairly significant PP performance boost with bf16 KV-cache: PP-4096 = 320 t/s up from 292 t/s with fp16 KV-cache. * Better gemm strategy when nth > nhead It gives a ~10% PP performance boost for DeepSeek-Lite with 32 threads (with or without MLA). Before this commit, when nth > nhead heads were processed sequentially with all nth threads participating in each matrix multiplication. Now we ind the gcd of nhead and nth and split threads into nth/gcd groups, each group processing nhead/gcd heads. --------- Co-authored-by: Saood Karim <saood05@gmail.com> Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r--ggml/src/ggml.c17
1 files changed, 4 insertions, 13 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index e07dd547..3867cf00 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -14064,31 +14064,22 @@ static void ggml_compute_forward_mul_mat(
#endif
#if GGML_USE_IQK_MULMAT
- if (dst->type == GGML_TYPE_F32 && (ne12*ne13)%nth == 0) {
+ if (dst->type == GGML_TYPE_F32) {
+ int gcd = simple_gcd(ne12*ne13, nth);
int counter = 0;
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
- if (counter++ % nth == ith) {
+ if ((counter++ % gcd) == (ith%gcd)) {
if (!iqk_mul_mat(ne01, ne11, ne00,
src0->type, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01, ///ggml_type_size(src0->type),
src1->type, (const char *)src1->data + i12*nb12 + i13*nb13, nb11, ///ggml_type_size(src1->type),
(float *)((char *)dst->data + i12*nb2 + i13*nb3), nb1/ggml_type_size(dst->type),
- 0, 1)) goto IQK_MulMat_Not_Available1;
+ ith/gcd, nth/gcd)) goto IQK_MulMat_Not_Available1;
}
}
}
return;
}
- if (dst->type == GGML_TYPE_F32) {
- for (int64_t i13 = 0; i13 < ne13; i13++)
- for (int64_t i12 = 0; i12 < ne12; i12++)
- if (!iqk_mul_mat(ne01, ne11, ne00,
- src0->type, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01, ///ggml_type_size(src0->type),
- src1->type, (const char *)src1->data + i12*nb12 + i13*nb13, nb11, ///ggml_type_size(src1->type),
- (float *)((char *)dst->data + i12*nb2 + i13*nb3), nb1/ggml_type_size(dst->type),
- ith, nth)) goto IQK_MulMat_Not_Available1;
- return;
- }
IQK_MulMat_Not_Available1:;
#endif