diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2024-12-03 12:59:22 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-12-03 12:59:22 +0100 |
commit | c5bf589367cd609f4c0ff73a6534bbde7902abe8 (patch) | |
tree | fa17f82c717d535222c1843fc9fca2d66f4d6ea7 /ggml/src/iqk/iqk_mul_mat.cpp | |
parent | ccec00939a30aa7762a232ac4dcadba985ef9ee4 (diff) |
Q5_0_R4 (#121)
* Adding q5_0_r4
We get PP-512(LLaMA-3.1-8B) = 256.7 t/s on a Ryzen-7950X.
We even get TG-128 improvement to 11.7 t/s from 11.1 t/s.
* q5_0_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 99.6 t/s on M2-Max,
up from 71.0 t/s for Q5_0. The difference to mainline llama.cpp
is no longer funny: they get 26.5 t/s for Q5_0.
For TG, we are nor able to fully saturate memory bandwidth
and arrive at 22.1 t/s @ 8 threads. Mainline llama.cpp gets
20.6 t/s for Q5_0.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/iqk/iqk_mul_mat.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index bbf7e379..4cdc1a08 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -2283,6 +2283,123 @@ static void mul_mat_q4_0_r4_q8_1(int n, const void * vx, size_t bx, const DataIn } #endif +template <int nrc_y> +static void mul_mat_q5_0_r4_q8_1_avx2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%8 == 0); + Q8<nrc_y, block_q8_1_x4> q8(info); + auto m4 = _mm256_set1_epi8(0xf); + auto m5 = _mm256_set1_epi8(0x10); + auto m1 = _mm256_set1_epi16(1); + int nb = n / QK5_0; + GGML_ASSERT(nb%4 == 0); + __m256 acc[nrc_y] = {}; + for (int ix = 0; ix < nrc_x; ix += 4) { + const block_q5_0_r4 * iq5 = (const block_q5_0_r4 *)((const char *)vx + ix*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int k = 0; k < 4; ++k) { + auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq5[4*ib4+k].d)); + auto scales = _mm256_set_m128(scales128, scales128); + auto scales_m = _mm256_mul_ps(scales, _mm256_set1_ps(-8.f)); + auto bits1 = _mm256_loadu_si256((const __m256i *)iq5[4*ib4+k].qs+0); + auto bits2 = _mm256_loadu_si256((const __m256i *)iq5[4*ib4+k].qs+1); + auto hbits = _mm_loadu_si128((const __m128i *)iq5[4*ib4+k].qh); + auto hb = MM256_SET_M128I(_mm_srli_epi16(hbits, 1), hbits); + auto q1 = _mm256_and_si256(bits1, m4) | _mm256_and_si256(_mm256_slli_epi16(hb, 4), m5); + auto q2 = _mm256_and_si256(bits2, m4) | _mm256_and_si256(_mm256_slli_epi16(hb, 2), m5); + auto q3 = _mm256_and_si256(_mm256_srli_epi16(bits1, 4), m4) | _mm256_and_si256(hb, m5); + auto q4 = _mm256_and_si256(_mm256_srli_epi16(bits2, 4), m4) | _mm256_and_si256(_mm256_srli_epi16(hb, 2), m5);; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k); + auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(q1, _mm256_shuffle_epi32(y, 0x00)), + _mm256_maddubs_epi16(q2, _mm256_shuffle_epi32(y, 0x55))); + auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(q3, _mm256_shuffle_epi32(y, 0xaa)), + _mm256_maddubs_epi16(q4, _mm256_shuffle_epi32(y, 0xff))); + auto sumi = _mm256_madd_epi16(m1, _mm256_add_epi16(sumi1, sumi2)); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_FP16_TO_FP32(q8.y[iy][ib4].d[k]))); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + acc[iy] = _mm256_fmadd_ps(scales_m, _mm256_set1_ps(GGML_FP16_TO_FP32(q8.y[iy][ib4].d[k+4])), acc[iy]); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, sum); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +#ifdef HAVE_FANCY_SIMD +template <int nrc_y> +static void mul_mat_q5_0_r4_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + if constexpr (nrc_y == 1) { + mul_mat_q5_0_r4_q8_1_avx2<1>(n, vx, bx, info, nrc_x); + } else { + GGML_ASSERT(nrc_x%8 == 0); + Q8<nrc_y, block_q8_1_x4> q8(info); + auto m4 = _mm512_set1_epi8(0xf); + auto m5 = _mm512_set1_epi8(0x10); + int nb = n / QK5_0; + GGML_ASSERT(nb%4 == 0); + __m512 acc[2*nrc_y] = {}; + __m512i qx[4]; + for (int ix = 0; ix < nrc_x; ix += 8) { + const block_q5_0_r4 * iq5l = (const block_q5_0_r4 *)((const char *)vx + (ix+0)*bx); + const block_q5_0_r4 * iq5h = (const block_q5_0_r4 *)((const char *)vx + (ix+4)*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int k = 0; k < 4; ++k) { + auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq5l[4*ib4+k].d)); + auto scales1 = _mm256_set_m128(scales128, scales128); + scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq5h[4*ib4+k].d)); + auto scales2 = _mm256_set_m128(scales128, scales128); + auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1); + auto scales_m = _mm512_mul_ps(scales, _mm512_set1_ps(-8.f)); + auto bits1 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq5l[4*ib4+k].qs+0)), + _mm256_loadu_si256((const __m256i *)iq5h[4*ib4+k].qs+0), 1); + auto bits2 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq5l[4*ib4+k].qs+1)), + _mm256_loadu_si256((const __m256i *)iq5h[4*ib4+k].qs+1), 1); + auto hbits1 = _mm_loadu_si128((const __m128i *)iq5l[4*ib4+k].qh); + auto hbits2 = _mm_loadu_si128((const __m128i *)iq5h[4*ib4+k].qh); + auto hb1 = MM256_SET_M128I(_mm_srli_epi16(hbits1, 1), hbits1); + auto hb2 = MM256_SET_M128I(_mm_srli_epi16(hbits2, 1), hbits2); + auto hb = _mm512_inserti32x8(_mm512_castsi256_si512(hb1), hb2, 1); + qx[0] = _mm512_and_si512(bits1, m4) | _mm512_and_si512(_mm512_slli_epi16(hb, 4), m5); + qx[1] = _mm512_and_si512(bits2, m4) | _mm512_and_si512(_mm512_slli_epi16(hb, 2), m5);; + //qx[2] = _mm512_and_si512(_mm512_srli_epi16(bits1, 4), m4) | _mm512_and_si512(_mm512_slli_epi16(hb, 2), m5); + qx[2] = _mm512_and_si512(_mm512_srli_epi16(bits1, 4), m4) | _mm512_and_si512(hb, m5); + qx[3] = _mm512_and_si512(_mm512_srli_epi16(bits2, 4), m4) | _mm512_and_si512(_mm512_srli_epi16(hb, 2), m5); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y8 = _mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k); + auto y = _mm512_inserti32x8(_mm512_castsi256_si512(y8), y8, 1); + auto sumi = _mm512_setzero_si512(); + sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x00))); + sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x55))); + sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xaa))); + sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xff))); + auto dy = _mm512_set1_ps(GGML_FP16_TO_FP32(q8.y[iy][ib4].d[k])); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales_m, _mm512_set1_ps(GGML_FP16_TO_FP32(q8.y[iy][ib4].d[k+4])), acc[2*iy+1]); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum512 = _mm512_add_ps(acc[2*iy+0], acc[2*iy+1]); + acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps(); + auto sum1 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 0), _mm512_extractf32x4_ps(sum512, 1)); + auto sum2 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 2), _mm512_extractf32x4_ps(sum512, 3)); + info.store(ix+0, iy, sum1); + info.store(ix+4, iy, sum2); + } + } + } +} +#else +template <int nrc_y> +static void mul_mat_q5_0_r4_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + mul_mat_q5_0_r4_q8_1_avx2<nrc_y>(n, vx, bx, info, nrc_x); +} +#endif + #ifdef HAVE_FANCY_SIMD template <int nrc_y> static void mul_mat_q8_0_r4_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { @@ -4398,6 +4515,18 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { mm.funcs[7] = mul_mat_q4_0_r4_q8_1<8>; expected_typeB = GGML_TYPE_Q8_1; break; + case GGML_TYPE_Q5_0_R4: + assert (ne00 % QK4_NL == 0); + mm.funcs[0] = mul_mat_q5_0_r4_q8_1<1>; + mm.funcs[1] = mul_mat_q5_0_r4_q8_1<2>; + mm.funcs[2] = mul_mat_q5_0_r4_q8_1<3>; + mm.funcs[3] = mul_mat_q5_0_r4_q8_1<4>; + mm.funcs[4] = mul_mat_q5_0_r4_q8_1<5>; + mm.funcs[5] = mul_mat_q5_0_r4_q8_1<6>; + mm.funcs[6] = mul_mat_q5_0_r4_q8_1<7>; + mm.funcs[7] = mul_mat_q5_0_r4_q8_1<8>; + expected_typeB = GGML_TYPE_Q8_1; + break; case GGML_TYPE_Q8_0_R4: assert (ne00 % QK4_NL == 0); mm.funcs[0] = mul_mat_q8_0_r4_q8_1<1>; @@ -6952,6 +7081,55 @@ void mul_mat_q4_0_r4_q8_0(int n, const void * vx, size_t bx, const DataInfo& inf } template <int nrc_y> +void mul_mat_q5_0_r4_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_0_x4> q8(info); + auto m4 = vdupq_n_u8(0x0f); + auto m5 = vdupq_n_u8(0x10); + auto m16 = vdupq_n_s8(-16); + int nb = n / QK5_0; + GGML_ASSERT(nb%4 == 0); + int8x16_t qx[8]; + float32x4_t acc[nrc_y] = {}; + for (int ix = 0; ix < nrc_x; ix += 4) { + const block_q5_0_r4 * iq5 = (const block_q5_0_r4 *)((const char *)vx + ix*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int k = 0; k < 4; ++k) { + auto scales = vcvt_f32_f16(vld1_f16((const float16_t *)iq5[4*ib4+k].d)); + auto lbits = vld1q_u8_x4(iq5[4*ib4+k].qs); + auto hbits = vld1q_u8(iq5[4*ib4+k].qh); + qx[0] = vaddq_s8(vandq_u8(lbits.val[0], m4) | vandq_u8(vshlq_n_u8(hbits, 4), m5), m16); // 0...3 + qx[1] = vaddq_s8(vandq_u8(lbits.val[1], m4) | vandq_u8(vshlq_n_u8(hbits, 3), m5), m16); // 16..19 + qx[2] = vaddq_s8(vandq_u8(lbits.val[2], m4) | vandq_u8(vshlq_n_u8(hbits, 2), m5), m16); // 4...7 + qx[3] = vaddq_s8(vandq_u8(lbits.val[3], m4) | vandq_u8(vshlq_n_u8(hbits, 1), m5), m16); // 20..23 + qx[4] = vaddq_s8(vshrq_n_u8(lbits.val[0], 4)| vandq_u8(hbits, m5), m16); // 8..11 + qx[5] = vaddq_s8(vshrq_n_u8(lbits.val[1], 4)| vandq_u8(vshrq_n_u8(hbits, 1), m5), m16); // 24..27 + qx[6] = vaddq_s8(vshrq_n_u8(lbits.val[2], 4)| vandq_u8(vshrq_n_u8(hbits, 2), m5), m16); // 12..15 + qx[7] = vaddq_s8(vshrq_n_u8(lbits.val[3], 4)| vandq_u8(vshrq_n_u8(hbits, 3), m5), m16); // 28..31 + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ib4].qs+32*k); + auto sumi = vdupq_n_s32(0); + sumi = vdotq_laneq_s32(sumi, qx[0], y.val[0], 0); + sumi = vdotq_laneq_s32(sumi, qx[1], y.val[1], 0); + sumi = vdotq_laneq_s32(sumi, qx[2], y.val[0], 1); + sumi = vdotq_laneq_s32(sumi, qx[3], y.val[1], 1); + sumi = vdotq_laneq_s32(sumi, qx[4], y.val[0], 2); + sumi = vdotq_laneq_s32(sumi, qx[5], y.val[1], 2); + sumi = vdotq_laneq_s32(sumi, qx[6], y.val[0], 3); + sumi = vdotq_laneq_s32(sumi, qx[7], y.val[1], 3); + auto d4d8 = vmulq_f32(scales, vdupq_n_f32(GGML_FP16_TO_FP32(q8.y[iy][ib4].d[k]))); + acc[iy] = vfmaq_f32(acc[iy], d4d8, vcvtq_f32_s32(sumi)); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, acc[iy]); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + +template <int nrc_y> void mul_mat_q8_0_r4_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { GGML_ASSERT(nrc_x%4 == 0); Q8<nrc_y, block_q8_0_x4> q8(info); @@ -7179,6 +7357,17 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { m.funcs[7] = mul_mat_q4_0_r4_q8_0<8>; expected_Btype = GGML_TYPE_Q8_0; break; + case GGML_TYPE_Q5_0_R4: + m.funcs[0] = mul_mat_q5_0_r4_q8_0<1>; + m.funcs[1] = mul_mat_q5_0_r4_q8_0<2>; + m.funcs[2] = mul_mat_q5_0_r4_q8_0<3>; + m.funcs[3] = mul_mat_q5_0_r4_q8_0<4>; + m.funcs[4] = mul_mat_q5_0_r4_q8_0<5>; + m.funcs[5] = mul_mat_q5_0_r4_q8_0<6>; + m.funcs[6] = mul_mat_q5_0_r4_q8_0<7>; + m.funcs[7] = mul_mat_q5_0_r4_q8_0<8>; + expected_Btype = GGML_TYPE_Q8_0; + break; case GGML_TYPE_Q8_0_R4: m.funcs[0] = mul_mat_q8_0_r4_q8_0<1>; m.funcs[1] = mul_mat_q8_0_r4_q8_0<2>; |