diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2025-06-18 16:20:54 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-06-18 16:20:54 +0300 |
commit | d85c64428e0598f2617a352aec9960242af45652 (patch) | |
tree | 66bd9be9d2ea315917b36adf1ac4cd24b9ba7a97 /ggml/src/iqk/iqk_mul_mat.cpp | |
parent | c410cc72bbfcbdef9ce552b425ab7abbeb250dff (diff) |
New IQ2_KT, IQ3_KT and IQ4_KT, V2 (#529)
* New iq4_kt trellis
The new trellis generates int8_t values via
sum_as_uint8_t[(ka * idx + kb) & 0x3f33f3f3f] - 126.
CUDA dequantize works.
AVX2 case Ny > 32 works, and we get 273 t/s for L3-8B.
PPL is on par or even slightly lower than original QTIP trellis.
* Something is not working with the AVX2 dot product
* New iq4_kt: CUDA MMVQ
* New iq4_kt: CUDA MMQ
* For now have only iq4_kt use the new trellis
* Fix iq2_kt that got broken along the way
* New iq4_kt: AVX2 dot product finally works
We get 13.6 t/s vs 8.4 t/s with the f16 trellis and f32 arithmetic.
Still somewhat slower than other quants, but no longer pathetic.
* New iq4_kt: fix vanilla AVX2
* New iq4_kt: NEON implementation
We get very respectable PP-512 = 120 t/s.
TG-128 is pathetic at 5.3 t/s, so 20+% slower than the f16 variant.
* New iq4_kt: slightly faster NEON
* New iq4_kt: slightly faster NEON
* New iq4_kt: faster NEON
We are now at 9.4 t/s, up from 6.6 t/s for the f16 trellis.
* Minor
* New iq4_kt trellis: not working Metal implementation
* Remove the extra 4 bytes of row meta data that is no longer used
* Cleanup
* Adding forgottent file
* Switching iq2_kt to new trellis - CUDA MMQ
* New iq2_kt: CUDA GEMV
* New iq2_kt: AVX2 dequantize
* New iq2_kt: AVX2 GEMM/GEMV
* Adding forgotten file
* New iq2_kt: NEON GEMM/GEMV
* New iq2_kt: slightly faster NEON GEMM
* New iq2_kt: Metal - very slow.
It seems Apple Silicon cannot quickly add 4 8-bit ints.
Or I don't know how to do it - but I didn't find anything
in the Metal Shading Language Specification.
So, performance is quite a bit worse than the original trellis.
* Add missing break
* Trying @louiehelm's multiplier
* CPU
* iq3_kt: use integer trellis + CUDA dequantize and MMVQ
* iq3_kt: MMQ
* iq3_kt: AVX2 GEMM
* iq3_kt: AVX2 GEMV
* The trellis quants now need super-blocks of 256, so we need a check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/iqk/iqk_mul_mat.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index 6925e6a6..f718e43e 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -236,9 +236,6 @@ struct MulMat { static inline ggml_type is_dequant_better(ggml_type type, int nrc_y) { #ifdef __AVX2__ switch (type) { - case GGML_TYPE_IQ2_KT : return nrc_y >= 32 ? GGML_TYPE_F32 : type; - case GGML_TYPE_IQ3_KT : return nrc_y >= 32 ? GGML_TYPE_F32 : type; - case GGML_TYPE_IQ4_KT : return nrc_y >= 32 ? GGML_TYPE_F32 : type; case GGML_TYPE_IQ2_XXS: return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type; case GGML_TYPE_IQ2_XS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type; case GGML_TYPE_IQ2_S : return nrc_y >= 16 ? GGML_TYPE_Q8_K_R8 : type; @@ -267,13 +264,16 @@ struct MulMat { case GGML_TYPE_Q6_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type; case GGML_TYPE_IQ4_NL : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type; case GGML_TYPE_Q8_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type; + case GGML_TYPE_IQ2_KT : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type; + case GGML_TYPE_IQ3_KT : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type; + case GGML_TYPE_IQ4_KT : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type; default: break; } #else switch (type) { - case GGML_TYPE_IQ2_KT: return nrc_y >= 32 ? GGML_TYPE_F16 : type; + case GGML_TYPE_IQ2_KT: return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type; case GGML_TYPE_IQ3_KT: return nrc_y >= 32 ? GGML_TYPE_F16 : type; - case GGML_TYPE_IQ4_KT: return nrc_y >= 32 ? GGML_TYPE_F16 : type; + case GGML_TYPE_IQ4_KT: return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type; default: break; } #endif @@ -815,7 +815,7 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { case GGML_TYPE_IQ2_KT: case GGML_TYPE_IQ3_KT: case GGML_TYPE_IQ4_KT: - return ggml_type(typeB) == GGML_TYPE_F32 ? iqk_set_kernels_ktquants(ne00, typeA, typeB, mm.funcs, mm.func16) : false; + return iqk_set_kernels_ktquants(ne00, typeA, typeB, mm.funcs, mm.func16); case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: |