diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/src/iqk/iqk_quantize.cpp | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/iqk/iqk_quantize.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 414 |
1 files changed, 414 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp new file mode 100644 index 00000000..8f541565 --- /dev/null +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -0,0 +1,414 @@ +// +// Copyright (C) 2024 Iwan Kawrakow +// MIT license +// SPDX-License-Identifier: MIT +// + +#if GGML_USE_IQK_MULMAT +#include "iqk_mul_mat.h" +#endif +#include "ggml-quants.h" +#include "ggml-impl.h" +#define GGML_COMMON_IMPL_C +#include "ggml-common.h" + +#include <vector> +#include <utility> +#include <cstdint> +#include <cmath> +#include <array> +#include <algorithm> +#include <cstring> + +namespace { + +inline int nearest_int(float fval) { + assert(fval <= 4194303.f); + float val = fval + 12582912.f; + int i; memcpy(&i, &val, sizeof(int)); + return (i & 0x007fffff) - 0x00400000; +} + +struct IQ1BNQuantizer { + int8_t L[QK_IQ1BN]; + void quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix); + void quantize_one_row_2bn(const float * src, block_iq2_bn * y, int n_per_row, const float * imatrix); + static inline float row_max(int n_per_row, const float * src) { + float max_in_row = 0; + for (int j = 0; j < n_per_row; ++j) { + float ax = fabsf(src[j]); + max_in_row = std::max(max_in_row, ax); + } + return max_in_row; + } + static constexpr uint8_t k_mult[5] = {81, 27, 9, 3, 1}; +}; + +void IQ1BNQuantizer::quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix) { + + static const int k_nb[6] = {1, 3, 9, 27, 81, 243}; + (void)imatrix; + + const int nblock = n_per_row/QK_IQ1BN; + + for (int ib = 0; ib < nblock; ++ib) { + std::memset(&y[ib], 0, sizeof(block_iq1_bn)); + auto xb = src + ib*QK_IQ1BN; + int v13 = 0; + for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) { + for (int k = 0; k < 3; ++k) { + int idx = 0; + for (int j = 0; j < 5; ++j) { + float v = xb[16*i16 + 5*k + j]; + int q = fabsf(v) < 1e-6f ? 1 : v < 0 ? 0 : 2; + idx += k_nb[j]*q; + } + idx = (256*idx + k_nb[5] - 1)/k_nb[5]; + y[ib].ql[3*i16 + k] = idx; + } + float v = xb[16*i16 + 15]; + int q = fabsf(v) < 1e-6f ? 1 : v < 0 ? 0 : 2; + v13 += k_nb[i16]*q; + } + y[ib].extra = (256*v13 + k_nb[5] - 1)/k_nb[5]; + } +} + +void IQ1BNQuantizer::quantize_one_row_2bn(const float * src, block_iq2_bn * y, int n_per_row, const float * imatrix) { + + (void)imatrix; + + const int nblock = n_per_row/QK_IQ1BN; + + constexpr int Nj = QK_IQ1BN/4; + + for (int ib = 0; ib < nblock; ++ib) { + auto xb = src + QK_IQ1BN*ib; + for (int j = 0; j < QK_IQ1BN; ++j) { + L[j] = fabsf(xb[j]) < 1e-6f ? 1 : xb[j] < 0 ? 0 : 2; + } + for (int j = 0; j < Nj; ++j) { + y[ib].qs[j] = L[j] | (L[j + Nj] << 2) | (L[j + 2*Nj] << 4) | (L[j + 3*Nj] << 6); + } + } +} + +} + +size_t quantize_iq1_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + IQ1BNQuantizer iq1bn; + int nblock = n_per_row/QK_IQ1BN; + block_iq1_bn * y = (block_iq1_bn *)dst; + for (int row = 0; row < nrows; ++row) { + iq1bn.quantize_one_row_1bn(src + row*n_per_row, y, n_per_row, imatrix); + y += nblock; + } + return sizeof(block_iq1_bn)*nblock*nrows; +} + +void quantize_row_iq1_bn_ref(const float * x, block_iq1_bn * y, int64_t k) { + quantize_iq1_bn(x, y, 1, k, nullptr); +} + +void quantize_row_iq1_bn(const float * x, void * y, int64_t k) { + quantize_iq1_bn(x, y, 1, k, nullptr); +} + +void dequantize_row_iq1_bn(const block_iq1_bn * x, float * y, int64_t k) { + assert(k%QK_IQ1BN == 0); + int nblock = k / QK_IQ1BN; + + for (int i = 0; i < nblock; ++i) { + uint8_t extra = x[i].extra; + auto ql = x[i].ql; + for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) { + for (int k = 0; k < 3; ++k) { + for (int j = 0; j < 5; ++j) { + uint8_t v = ql[k]*IQ1BNQuantizer::k_mult[j]; + int8_t vs = ((v + (v >> 1)) >> 7); + *y++ = vs - 1; + } + } + ql += 3; + uint8_t v = extra*IQ1BNQuantizer::k_mult[i16]; + int8_t vs = ((v + (v >> 1)) >> 7); + *y++ = vs - 1; + } + } +} + +size_t quantize_iq2_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + IQ1BNQuantizer iq1bn; + int nblock = n_per_row/QK_IQ1BN; + block_iq2_bn * y = (block_iq2_bn *)dst; + for (int row = 0; row < nrows; ++row) { + iq1bn.quantize_one_row_2bn(src + row*n_per_row, y, n_per_row, imatrix); + y += nblock; + } + return sizeof(block_iq2_bn)*nblock*nrows; +} + +void quantize_row_iq2_bn_ref(const float * x, block_iq2_bn * y, int64_t k) { + quantize_iq2_bn(x, y, 1, k, nullptr); +} + +void quantize_row_iq2_bn(const float * x, void * y, int64_t k) { + quantize_iq2_bn(x, y, 1, k, nullptr); +} + +void dequantize_row_iq2_bn(const block_iq2_bn * x, float * y, int64_t k) { + assert(k%QK_IQ1BN == 0); + int nblock = k / QK_IQ1BN; + + auto d1 = 1.f, d2 = 0.25f, d3 = d2*0.25f, d4 = d3*0.25f; + auto m = -1.f; + constexpr int Nj = QK_IQ1BN/4; + for (int i = 0; i < nblock; ++i) { + for (int j = 0; j < Nj; ++j) { + y[j+ 0] = d1*(x[i].qs[j] & 0x03) + m; + y[j+1*Nj] = d2*(x[i].qs[j] & 0x0c) + m; + y[j+2*Nj] = d3*(x[i].qs[j] & 0x30) + m; + y[j+3*Nj] = d4*(x[i].qs[j] & 0xc0) + m; + } + y += QK_IQ1BN; + } +} + +namespace { +inline int8_t iq1bn_dequant(uint8_t q, int i) { + uint8_t v = IQ1BNQuantizer::k_mult[i]*q; + //int8_t vs = (v + (v << 1)) >> 8; + int8_t vs = 3*v >> 8; + return vs - 1; +} +} + +static const int8_t iq1bn_values[1280] = { + -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, -1, 1, 0, + -1, -1, -1, -1, 1, -1, -1, -1, 0, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 0, -1, -1, 0, -1, 0, -1, -1, 1, -1, 0, -1, + -1, -1, 0, 0, -1, -1, 0, 0, 0, -1, -1, 1, 0, 0, -1, -1, -1, 1, 0, -1, -1, 0, 1, 0, -1, -1, 1, 1, 0, -1, -1, -1, + -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 0, 1, -1, -1, 0, 0, 1, -1, -1, 1, 0, 1, + -1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 0, -1, 0, -1, -1, 0, -1, 1, -1, -1, 0, -1, + -1, 0, -1, 0, -1, 0, 0, -1, 0, -1, 1, 0, -1, 0, -1, -1, 1, -1, 0, -1, 0, 1, -1, 0, -1, 1, 1, -1, 0, -1, -1, -1, + 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, + -1, -1, 1, 0, 0, -1, 0, 1, 0, 0, -1, 1, 1, 0, 0, -1, -1, -1, 1, 0, -1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, -1, + 0, 1, 0, -1, 0, 0, 1, 0, -1, 1, 0, 1, 0, -1, -1, 1, 1, 0, -1, 0, 1, 1, 0, -1, 1, 1, 1, 0, -1, -1, -1, -1, + 1, -1, 0, -1, -1, 1, -1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 1, -1, 0, 0, -1, 1, -1, 1, 0, -1, 1, -1, + -1, 1, -1, 1, -1, 0, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 0, 1, -1, 0, -1, 0, 1, -1, 1, -1, 0, 1, -1, -1, 0, + 0, 1, -1, 0, 0, 0, 1, -1, 1, 0, 0, 1, -1, -1, 1, 0, 1, -1, 0, 1, 0, 1, -1, 1, 1, 0, 1, -1, -1, -1, 1, 1, + -1, 0, -1, 1, 1, -1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, -1, 0, 1, 1, -1, 0, 0, 1, 1, -1, 1, 0, 1, 1, -1, -1, + 1, 1, 1, -1, 0, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, 0, 1, -1, -1, -1, 0, -1, 0, -1, + -1, 0, 0, 0, -1, -1, 0, 1, 0, -1, -1, 0, -1, 1, -1, -1, 0, 0, 1, -1, -1, 0, 1, 1, -1, -1, 0, -1, -1, 0, -1, 0, + 0, -1, 0, -1, 0, 1, -1, 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, -1, 0, -1, 1, + 0, -1, 0, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, -1, -1, 1, -1, 0, 0, -1, 1, -1, 0, 1, -1, 1, -1, 0, -1, 0, 1, -1, + 0, 0, 0, 1, -1, 0, 1, 0, 1, -1, 0, -1, 1, 1, -1, 0, 0, 1, 1, -1, 0, 1, 1, 1, -1, 0, -1, -1, -1, 0, 0, 0, + -1, -1, 0, 0, 1, -1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, -1, 1, -1, + 0, 0, 0, 1, -1, 0, 0, 1, 1, -1, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 1, 0, 0, 0, -1, + 1, 0, 0, 1, -1, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, -1, 1, 1, 0, + 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 1, 0, 0, -1, -1, 1, 0, 1, -1, -1, 1, 0, -1, 0, -1, 1, 0, 0, + 0, -1, 1, 0, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, 0, 1, -1, 1, 0, 1, 1, -1, 1, 0, -1, -1, 0, 1, 0, 0, -1, 0, + 1, 0, 1, -1, 0, 1, 0, -1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 1, 0, + 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, -1, -1, 1, 1, 0, 0, -1, 1, 1, 0, 1, -1, 1, 1, 0, -1, 0, 1, 1, 0, 0, 0, + 1, 1, 0, 1, 0, 1, 1, 0, -1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 1, 0, -1, -1, -1, + 1, 1, -1, -1, -1, 1, -1, 0, -1, -1, 1, 0, 0, -1, -1, 1, 1, 0, -1, -1, 1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, + 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 0, -1, 1, 0, -1, 0, -1, 1, 1, -1, 0, -1, 1, -1, 0, 0, -1, 1, 0, 0, 0, + -1, 1, 1, 0, 0, -1, 1, -1, 1, 0, -1, 1, 0, 1, 0, -1, 1, 1, 1, 0, -1, 1, -1, -1, 1, -1, 1, 0, -1, 1, -1, 1, + 1, -1, 1, -1, 1, -1, 0, 1, -1, 1, 0, 0, 1, -1, 1, 1, 0, 1, -1, 1, -1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 1, + 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 0, 1, 0, -1, -1, 0, 1, 1, -1, -1, 0, 1, -1, 0, -1, 0, 1, 0, 0, -1, 0, + 1, 1, 0, -1, 0, 1, -1, 1, -1, 0, 1, 0, 1, -1, 0, 1, 1, 1, -1, 0, 1, -1, -1, 0, 0, 1, 0, -1, 0, 0, 1, 1, + -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, + 0, 0, 1, 1, 0, 0, 1, -1, -1, 1, 0, 1, 0, -1, 1, 0, 1, 1, -1, 1, 0, 1, -1, 0, 1, 0, 1, 0, 0, 1, 0, 1, + 1, 0, 1, 0, 1, -1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, -1, -1, -1, 1, 1, 0, -1, -1, 1, 1, 1, -1, + -1, 1, 1, -1, 0, -1, 1, 1, 0, 0, -1, 1, 1, 1, 0, -1, 1, 1, -1, 1, -1, 1, 1, 0, 1, -1, 1, 1, 1, 1, -1, 1, + 1, 0, 0, 0, 0, 0, -1, -1, 0, 1, 1, 0, -1, 0, 1, 1, 1, -1, 0, 1, 1, -1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, + 0, 0, 1, 1, -1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, 1, 0, -1, 1, 1, 1, 1, -1, 1, + 1, 1, -1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, +}; + +void ggml_vec_dot_iq1_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + + GGML_UNUSED(bs); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(nrc); + + static_assert(QK_IQ1BN == 64, "This dot product implementation for iq1_bn requires a block size of 64"); + +#if GGML_USE_IQK_MULMAT + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ1_BN, vx, 0, GGML_TYPE_Q8_K64, vy, 0, s, 0, 0, 1)) { + return; + } +#endif + + const block_iq1_bn * x = (const block_iq1_bn *)vx; + + const float * d8 = (const float *)vy; + const int8_t * q8 = (const int8_t *)(d8 + 4); + int nblock = n / QK_IQ1BN; + + int sumi[8] = {}; + int8_t q1[16]; + + for (int ii = 0; ii < nblock; ii += 32) { + int16_t sum16[8] = {}; + int nb = std::min(ii + 32, nblock); + for (int i = ii; i < nb; ++i) { + auto ql = x[i].ql; + const int8_t * extra = iq1bn_values + 5*x[i].extra; + for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) { + for (int k = 0; k < 3; ++k) { + uint8_t q = *ql++; + const int8_t * vs = iq1bn_values + 5*q; + for (int j = 0; j < 5; ++j) q1[5*k+j] = vs[j]; + } + q1[15] = extra[i16]; + // We collect 8 q8 values per block into each element of sum16 + // => 32 x 8 = 256 values in each loop over i, so this cannot overflow the int16_t range + // (q8 is in -127...127, and hence the sum is in -32512...32512 + for (int j = 0; j < 8; ++j) sum16[j] += q8[2*j+0]*q1[2*j+0] + q8[2*j+1]*q1[2*j+1]; + q8 += 16; + } + } + for (int j = 0; j < 8; ++j) sumi[j] += sum16[j]; + } + + *s = d8[0] * (sumi[0] + sumi[1]) + d8[1] * (sumi[2] + sumi[3]) + d8[2] * (sumi[4] + sumi[5]) + d8[3] * (sumi[6] + sumi[7]); +} + +void ggml_vec_dot_iq2_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + + GGML_ASSERT(nrc == 1); + GGML_UNUSED(bs); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(nrc); + + static_assert(QK_IQ1BN == 64, "This dot product implementation for iq2_bn requires a block size of 64"); + + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_BN, vx, 0, GGML_TYPE_Q8_K64, vy, 0, s, 0, 0, 1)) { + return; + } + + constexpr int Nj = QK_IQ1BN/4; + + const block_iq2_bn * x = (const block_iq2_bn *)vx; + int nblock = n / QK_IQ1BN; + + const float * d = (const float *)vy; + const int8_t * q8 = (const int8_t *)(d + 4); + + int sum[16] = { }; + int sum0[4] = { }; + + for (int i = 0; i < nblock; ++i) { + for (int j = 0; j < Nj/4; ++j) { + for (int l = 0; l < 4; ++l) { + sum[4*j + 0] += q8[4*j + l + 0] * (x[i].qs[4*j+l] & 0x03); + sum[4*j + 1] += q8[4*j + l + 1*Nj] * (x[i].qs[4*j+l] & 0x0c); + sum[4*j + 2] += q8[4*j + l + 2*Nj] * (x[i].qs[4*j+l] & 0x30); + sum[4*j + 3] += q8[4*j + l + 3*Nj] * (x[i].qs[4*j+l] & 0xc0); + sum0[j] += q8[4*j + l] + q8[4*j + l + 1*Nj] + q8[4*j + l + 2*Nj] + q8[4*j + l + 3*Nj]; + } + } + q8 += QK_IQ1BN; + } + + float sumf = 0; + for (int j = 0; j < 4; ++j) { + sumf += d[j] * (sum[4*j + 0] + 0.25f*sum[4*j + 1] + 0.0625*sum[4*j + 2] + 0.015625*sum[4*j + 3] - sum0[j]); + } + *s = sumf; + +} + +void quantize_row_q8_K64_ref(const float * x, block_q8_K64 * y, int64_t k) { + + float * dptr = (float *)y; + auto qs = (int8_t *)(dptr + 4); +#ifdef __ARM_NEON + static const uint8_t k_shuffle[16] = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60}; + auto shuffle = vld1q_u8(k_shuffle); + float32x4_t max[4] = { }; + for (int j = 0; j < k; j += 16) { + for (int i = 0; i < 4; ++i) { + auto val = vld1q_f32(x + j + 4*i); + val = vabsq_f32(val); + max[i] = vmaxq_f32(max[i], val); + } + } + float32x4_t vid[4]; + for (int i = 0; i < 4; ++i) { + dptr[i] = vmaxvq_f32(max[i])/127; + float id = dptr[i] > 0 ? 1/dptr[i] : 0.f; + vid[i] = vdupq_n_f32(id); + } + int8x16x4_t q; + for (int j = 0; j < k; j += 16) { + for (int i = 0; i < 4; ++i) { + auto val = vld1q_f32(x + j + 4*i); + val = vmulq_f32(vid[i], val); + q.val[i] = vreinterpretq_s8_s32(vcvtnq_s32_f32(val)); + } + auto qi = vqtbl4q_s8(q, shuffle); + vst1q_s8(qs, qi); + qs += 16; + } +#elif defined __AVX__ + __m128 max[4] = {}; + __m128 sign_bit = _mm_set1_ps(-0.f); + for (int j = 0; j < k; j += 16) { + for (int i = 0; i < 4; ++i) { + auto val = _mm_loadu_ps(x + j + 4*i); + val = _mm_andnot_ps(sign_bit, val); + max[i] = _mm_max_ps(max[i], val); + } + } + __m128 vid[4]; + for (int i = 0; i < 4; ++i) { + max[i] = _mm_max_ps(max[i], _mm_movehl_ps(max[i], max[i])); + max[i] = _mm_max_ss(max[i], _mm_movehdup_ps(max[i])); + float maxi = _mm_cvtss_f32(max[i]); + dptr[i] = maxi/127; + float id = dptr[i] > 0 ? 1/dptr[i] : 0.f; + vid[i] = _mm_set1_ps(id); + } + __m128i q[4]; + for (int j = 0; j < k; j += 16) { + for (int i = 0; i < 4; ++i) { + auto val = _mm_loadu_ps(x + j + 4*i); + val = _mm_round_ps(_mm_mul_ps(vid[i], val), _MM_ROUND_NEAREST); + q[i] = _mm_cvtps_epi32(val); + } + auto q1 = _mm_packs_epi32(q[0], q[1]); + auto q2 = _mm_packs_epi32(q[2], q[3]); + auto qi = _mm_packs_epi16(q1, q2); + _mm_storeu_si128((__m128i *)qs, qi); + qs += 16; + } +#else + float aux[4] = {0.f, 0.f, 0.f, 0.f}; + for (int j = 0; j < k; j += 16) { + for (int i = 0; i < 4; ++i) { + for (int l = 0; l < 4; ++l) { + float ax = fabsf(x[j+4*i+l]); + aux[i] = std::max(aux[i], ax); + } + } + } + for (int i = 0; i < 4; ++i) { + dptr[i] = aux[i]/127; + aux[i] = dptr[i] > 0 ? 1/dptr[i] : 0.f; + } + for (int j = 0; j < k; j += 16) { + for (int i = 0; i < 4; ++i) { + for (int l = 0; l < 4; ++l) qs[j+4*i+l] = nearest_int(aux[i]*x[j+4*i+l]); + } + } +#endif +} + +void quantize_row_q8_K64(const float * x, void * y, int64_t k) { + quantize_row_q8_K64_ref(x, (block_q8_K64 *)y, k); +} + |