summaryrefslogtreecommitdiff
path: root/ggml/src/iqk/iqk_quantize.cpp
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/src/iqk/iqk_quantize.cpp
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/iqk/iqk_quantize.cpp')
-rw-r--r--ggml/src/iqk/iqk_quantize.cpp414
1 files changed, 414 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp
new file mode 100644
index 00000000..8f541565
--- /dev/null
+++ b/ggml/src/iqk/iqk_quantize.cpp
@@ -0,0 +1,414 @@
+//
+// Copyright (C) 2024 Iwan Kawrakow
+// MIT license
+// SPDX-License-Identifier: MIT
+//
+
+#if GGML_USE_IQK_MULMAT
+#include "iqk_mul_mat.h"
+#endif
+#include "ggml-quants.h"
+#include "ggml-impl.h"
+#define GGML_COMMON_IMPL_C
+#include "ggml-common.h"
+
+#include <vector>
+#include <utility>
+#include <cstdint>
+#include <cmath>
+#include <array>
+#include <algorithm>
+#include <cstring>
+
+namespace {
+
+inline int nearest_int(float fval) {
+ assert(fval <= 4194303.f);
+ float val = fval + 12582912.f;
+ int i; memcpy(&i, &val, sizeof(int));
+ return (i & 0x007fffff) - 0x00400000;
+}
+
+struct IQ1BNQuantizer {
+ int8_t L[QK_IQ1BN];
+ void quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix);
+ void quantize_one_row_2bn(const float * src, block_iq2_bn * y, int n_per_row, const float * imatrix);
+ static inline float row_max(int n_per_row, const float * src) {
+ float max_in_row = 0;
+ for (int j = 0; j < n_per_row; ++j) {
+ float ax = fabsf(src[j]);
+ max_in_row = std::max(max_in_row, ax);
+ }
+ return max_in_row;
+ }
+ static constexpr uint8_t k_mult[5] = {81, 27, 9, 3, 1};
+};
+
+void IQ1BNQuantizer::quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix) {
+
+ static const int k_nb[6] = {1, 3, 9, 27, 81, 243};
+ (void)imatrix;
+
+ const int nblock = n_per_row/QK_IQ1BN;
+
+ for (int ib = 0; ib < nblock; ++ib) {
+ std::memset(&y[ib], 0, sizeof(block_iq1_bn));
+ auto xb = src + ib*QK_IQ1BN;
+ int v13 = 0;
+ for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) {
+ for (int k = 0; k < 3; ++k) {
+ int idx = 0;
+ for (int j = 0; j < 5; ++j) {
+ float v = xb[16*i16 + 5*k + j];
+ int q = fabsf(v) < 1e-6f ? 1 : v < 0 ? 0 : 2;
+ idx += k_nb[j]*q;
+ }
+ idx = (256*idx + k_nb[5] - 1)/k_nb[5];
+ y[ib].ql[3*i16 + k] = idx;
+ }
+ float v = xb[16*i16 + 15];
+ int q = fabsf(v) < 1e-6f ? 1 : v < 0 ? 0 : 2;
+ v13 += k_nb[i16]*q;
+ }
+ y[ib].extra = (256*v13 + k_nb[5] - 1)/k_nb[5];
+ }
+}
+
+void IQ1BNQuantizer::quantize_one_row_2bn(const float * src, block_iq2_bn * y, int n_per_row, const float * imatrix) {
+
+ (void)imatrix;
+
+ const int nblock = n_per_row/QK_IQ1BN;
+
+ constexpr int Nj = QK_IQ1BN/4;
+
+ for (int ib = 0; ib < nblock; ++ib) {
+ auto xb = src + QK_IQ1BN*ib;
+ for (int j = 0; j < QK_IQ1BN; ++j) {
+ L[j] = fabsf(xb[j]) < 1e-6f ? 1 : xb[j] < 0 ? 0 : 2;
+ }
+ for (int j = 0; j < Nj; ++j) {
+ y[ib].qs[j] = L[j] | (L[j + Nj] << 2) | (L[j + 2*Nj] << 4) | (L[j + 3*Nj] << 6);
+ }
+ }
+}
+
+}
+
+size_t quantize_iq1_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) {
+ IQ1BNQuantizer iq1bn;
+ int nblock = n_per_row/QK_IQ1BN;
+ block_iq1_bn * y = (block_iq1_bn *)dst;
+ for (int row = 0; row < nrows; ++row) {
+ iq1bn.quantize_one_row_1bn(src + row*n_per_row, y, n_per_row, imatrix);
+ y += nblock;
+ }
+ return sizeof(block_iq1_bn)*nblock*nrows;
+}
+
+void quantize_row_iq1_bn_ref(const float * x, block_iq1_bn * y, int64_t k) {
+ quantize_iq1_bn(x, y, 1, k, nullptr);
+}
+
+void quantize_row_iq1_bn(const float * x, void * y, int64_t k) {
+ quantize_iq1_bn(x, y, 1, k, nullptr);
+}
+
+void dequantize_row_iq1_bn(const block_iq1_bn * x, float * y, int64_t k) {
+ assert(k%QK_IQ1BN == 0);
+ int nblock = k / QK_IQ1BN;
+
+ for (int i = 0; i < nblock; ++i) {
+ uint8_t extra = x[i].extra;
+ auto ql = x[i].ql;
+ for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) {
+ for (int k = 0; k < 3; ++k) {
+ for (int j = 0; j < 5; ++j) {
+ uint8_t v = ql[k]*IQ1BNQuantizer::k_mult[j];
+ int8_t vs = ((v + (v >> 1)) >> 7);
+ *y++ = vs - 1;
+ }
+ }
+ ql += 3;
+ uint8_t v = extra*IQ1BNQuantizer::k_mult[i16];
+ int8_t vs = ((v + (v >> 1)) >> 7);
+ *y++ = vs - 1;
+ }
+ }
+}
+
+size_t quantize_iq2_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) {
+ IQ1BNQuantizer iq1bn;
+ int nblock = n_per_row/QK_IQ1BN;
+ block_iq2_bn * y = (block_iq2_bn *)dst;
+ for (int row = 0; row < nrows; ++row) {
+ iq1bn.quantize_one_row_2bn(src + row*n_per_row, y, n_per_row, imatrix);
+ y += nblock;
+ }
+ return sizeof(block_iq2_bn)*nblock*nrows;
+}
+
+void quantize_row_iq2_bn_ref(const float * x, block_iq2_bn * y, int64_t k) {
+ quantize_iq2_bn(x, y, 1, k, nullptr);
+}
+
+void quantize_row_iq2_bn(const float * x, void * y, int64_t k) {
+ quantize_iq2_bn(x, y, 1, k, nullptr);
+}
+
+void dequantize_row_iq2_bn(const block_iq2_bn * x, float * y, int64_t k) {
+ assert(k%QK_IQ1BN == 0);
+ int nblock = k / QK_IQ1BN;
+
+ auto d1 = 1.f, d2 = 0.25f, d3 = d2*0.25f, d4 = d3*0.25f;
+ auto m = -1.f;
+ constexpr int Nj = QK_IQ1BN/4;
+ for (int i = 0; i < nblock; ++i) {
+ for (int j = 0; j < Nj; ++j) {
+ y[j+ 0] = d1*(x[i].qs[j] & 0x03) + m;
+ y[j+1*Nj] = d2*(x[i].qs[j] & 0x0c) + m;
+ y[j+2*Nj] = d3*(x[i].qs[j] & 0x30) + m;
+ y[j+3*Nj] = d4*(x[i].qs[j] & 0xc0) + m;
+ }
+ y += QK_IQ1BN;
+ }
+}
+
+namespace {
+inline int8_t iq1bn_dequant(uint8_t q, int i) {
+ uint8_t v = IQ1BNQuantizer::k_mult[i]*q;
+ //int8_t vs = (v + (v << 1)) >> 8;
+ int8_t vs = 3*v >> 8;
+ return vs - 1;
+}
+}
+
+static const int8_t iq1bn_values[1280] = {
+ -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, -1, 1, 0,
+ -1, -1, -1, -1, 1, -1, -1, -1, 0, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 0, -1, -1, 0, -1, 0, -1, -1, 1, -1, 0, -1,
+ -1, -1, 0, 0, -1, -1, 0, 0, 0, -1, -1, 1, 0, 0, -1, -1, -1, 1, 0, -1, -1, 0, 1, 0, -1, -1, 1, 1, 0, -1, -1, -1,
+ -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 0, 1, -1, -1, 0, 0, 1, -1, -1, 1, 0, 1,
+ -1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 0, -1, 0, -1, -1, 0, -1, 1, -1, -1, 0, -1,
+ -1, 0, -1, 0, -1, 0, 0, -1, 0, -1, 1, 0, -1, 0, -1, -1, 1, -1, 0, -1, 0, 1, -1, 0, -1, 1, 1, -1, 0, -1, -1, -1,
+ 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0,
+ -1, -1, 1, 0, 0, -1, 0, 1, 0, 0, -1, 1, 1, 0, 0, -1, -1, -1, 1, 0, -1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, -1,
+ 0, 1, 0, -1, 0, 0, 1, 0, -1, 1, 0, 1, 0, -1, -1, 1, 1, 0, -1, 0, 1, 1, 0, -1, 1, 1, 1, 0, -1, -1, -1, -1,
+ 1, -1, 0, -1, -1, 1, -1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 1, -1, 0, 0, -1, 1, -1, 1, 0, -1, 1, -1,
+ -1, 1, -1, 1, -1, 0, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 0, 1, -1, 0, -1, 0, 1, -1, 1, -1, 0, 1, -1, -1, 0,
+ 0, 1, -1, 0, 0, 0, 1, -1, 1, 0, 0, 1, -1, -1, 1, 0, 1, -1, 0, 1, 0, 1, -1, 1, 1, 0, 1, -1, -1, -1, 1, 1,
+ -1, 0, -1, 1, 1, -1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, -1, 0, 1, 1, -1, 0, 0, 1, 1, -1, 1, 0, 1, 1, -1, -1,
+ 1, 1, 1, -1, 0, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, 0, 1, -1, -1, -1, 0, -1, 0, -1,
+ -1, 0, 0, 0, -1, -1, 0, 1, 0, -1, -1, 0, -1, 1, -1, -1, 0, 0, 1, -1, -1, 0, 1, 1, -1, -1, 0, -1, -1, 0, -1, 0,
+ 0, -1, 0, -1, 0, 1, -1, 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, -1, 0, -1, 1,
+ 0, -1, 0, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, -1, -1, 1, -1, 0, 0, -1, 1, -1, 0, 1, -1, 1, -1, 0, -1, 0, 1, -1,
+ 0, 0, 0, 1, -1, 0, 1, 0, 1, -1, 0, -1, 1, 1, -1, 0, 0, 1, 1, -1, 0, 1, 1, 1, -1, 0, -1, -1, -1, 0, 0, 0,
+ -1, -1, 0, 0, 1, -1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, -1, 1, -1,
+ 0, 0, 0, 1, -1, 0, 0, 1, 1, -1, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 1, 0, 0, 0, -1,
+ 1, 0, 0, 1, -1, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, -1, 1, 1, 0,
+ 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 1, 0, 0, -1, -1, 1, 0, 1, -1, -1, 1, 0, -1, 0, -1, 1, 0, 0,
+ 0, -1, 1, 0, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, 0, 1, -1, 1, 0, 1, 1, -1, 1, 0, -1, -1, 0, 1, 0, 0, -1, 0,
+ 1, 0, 1, -1, 0, 1, 0, -1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 1, 0,
+ 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, -1, -1, 1, 1, 0, 0, -1, 1, 1, 0, 1, -1, 1, 1, 0, -1, 0, 1, 1, 0, 0, 0,
+ 1, 1, 0, 1, 0, 1, 1, 0, -1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 1, 0, -1, -1, -1,
+ 1, 1, -1, -1, -1, 1, -1, 0, -1, -1, 1, 0, 0, -1, -1, 1, 1, 0, -1, -1, 1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0,
+ 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 0, -1, 1, 0, -1, 0, -1, 1, 1, -1, 0, -1, 1, -1, 0, 0, -1, 1, 0, 0, 0,
+ -1, 1, 1, 0, 0, -1, 1, -1, 1, 0, -1, 1, 0, 1, 0, -1, 1, 1, 1, 0, -1, 1, -1, -1, 1, -1, 1, 0, -1, 1, -1, 1,
+ 1, -1, 1, -1, 1, -1, 0, 1, -1, 1, 0, 0, 1, -1, 1, 1, 0, 1, -1, 1, -1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 1,
+ 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 0, 1, 0, -1, -1, 0, 1, 1, -1, -1, 0, 1, -1, 0, -1, 0, 1, 0, 0, -1, 0,
+ 1, 1, 0, -1, 0, 1, -1, 1, -1, 0, 1, 0, 1, -1, 0, 1, 1, 1, -1, 0, 1, -1, -1, 0, 0, 1, 0, -1, 0, 0, 1, 1,
+ -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,
+ 0, 0, 1, 1, 0, 0, 1, -1, -1, 1, 0, 1, 0, -1, 1, 0, 1, 1, -1, 1, 0, 1, -1, 0, 1, 0, 1, 0, 0, 1, 0, 1,
+ 1, 0, 1, 0, 1, -1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, -1, -1, -1, 1, 1, 0, -1, -1, 1, 1, 1, -1,
+ -1, 1, 1, -1, 0, -1, 1, 1, 0, 0, -1, 1, 1, 1, 0, -1, 1, 1, -1, 1, -1, 1, 1, 0, 1, -1, 1, 1, 1, 1, -1, 1,
+ 1, 0, 0, 0, 0, 0, -1, -1, 0, 1, 1, 0, -1, 0, 1, 1, 1, -1, 0, 1, 1, -1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1,
+ 0, 0, 1, 1, -1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, 1, 0, -1, 1, 1, 1, 1, -1, 1,
+ 1, 1, -1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+};
+
+void ggml_vec_dot_iq1_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) {
+
+ GGML_UNUSED(bs);
+ GGML_UNUSED(bx);
+ GGML_UNUSED(by);
+ GGML_UNUSED(nrc);
+
+ static_assert(QK_IQ1BN == 64, "This dot product implementation for iq1_bn requires a block size of 64");
+
+#if GGML_USE_IQK_MULMAT
+ if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ1_BN, vx, 0, GGML_TYPE_Q8_K64, vy, 0, s, 0, 0, 1)) {
+ return;
+ }
+#endif
+
+ const block_iq1_bn * x = (const block_iq1_bn *)vx;
+
+ const float * d8 = (const float *)vy;
+ const int8_t * q8 = (const int8_t *)(d8 + 4);
+ int nblock = n / QK_IQ1BN;
+
+ int sumi[8] = {};
+ int8_t q1[16];
+
+ for (int ii = 0; ii < nblock; ii += 32) {
+ int16_t sum16[8] = {};
+ int nb = std::min(ii + 32, nblock);
+ for (int i = ii; i < nb; ++i) {
+ auto ql = x[i].ql;
+ const int8_t * extra = iq1bn_values + 5*x[i].extra;
+ for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) {
+ for (int k = 0; k < 3; ++k) {
+ uint8_t q = *ql++;
+ const int8_t * vs = iq1bn_values + 5*q;
+ for (int j = 0; j < 5; ++j) q1[5*k+j] = vs[j];
+ }
+ q1[15] = extra[i16];
+ // We collect 8 q8 values per block into each element of sum16
+ // => 32 x 8 = 256 values in each loop over i, so this cannot overflow the int16_t range
+ // (q8 is in -127...127, and hence the sum is in -32512...32512
+ for (int j = 0; j < 8; ++j) sum16[j] += q8[2*j+0]*q1[2*j+0] + q8[2*j+1]*q1[2*j+1];
+ q8 += 16;
+ }
+ }
+ for (int j = 0; j < 8; ++j) sumi[j] += sum16[j];
+ }
+
+ *s = d8[0] * (sumi[0] + sumi[1]) + d8[1] * (sumi[2] + sumi[3]) + d8[2] * (sumi[4] + sumi[5]) + d8[3] * (sumi[6] + sumi[7]);
+}
+
+void ggml_vec_dot_iq2_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) {
+
+ GGML_ASSERT(nrc == 1);
+ GGML_UNUSED(bs);
+ GGML_UNUSED(bx);
+ GGML_UNUSED(by);
+ GGML_UNUSED(nrc);
+
+ static_assert(QK_IQ1BN == 64, "This dot product implementation for iq2_bn requires a block size of 64");
+
+ if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_BN, vx, 0, GGML_TYPE_Q8_K64, vy, 0, s, 0, 0, 1)) {
+ return;
+ }
+
+ constexpr int Nj = QK_IQ1BN/4;
+
+ const block_iq2_bn * x = (const block_iq2_bn *)vx;
+ int nblock = n / QK_IQ1BN;
+
+ const float * d = (const float *)vy;
+ const int8_t * q8 = (const int8_t *)(d + 4);
+
+ int sum[16] = { };
+ int sum0[4] = { };
+
+ for (int i = 0; i < nblock; ++i) {
+ for (int j = 0; j < Nj/4; ++j) {
+ for (int l = 0; l < 4; ++l) {
+ sum[4*j + 0] += q8[4*j + l + 0] * (x[i].qs[4*j+l] & 0x03);
+ sum[4*j + 1] += q8[4*j + l + 1*Nj] * (x[i].qs[4*j+l] & 0x0c);
+ sum[4*j + 2] += q8[4*j + l + 2*Nj] * (x[i].qs[4*j+l] & 0x30);
+ sum[4*j + 3] += q8[4*j + l + 3*Nj] * (x[i].qs[4*j+l] & 0xc0);
+ sum0[j] += q8[4*j + l] + q8[4*j + l + 1*Nj] + q8[4*j + l + 2*Nj] + q8[4*j + l + 3*Nj];
+ }
+ }
+ q8 += QK_IQ1BN;
+ }
+
+ float sumf = 0;
+ for (int j = 0; j < 4; ++j) {
+ sumf += d[j] * (sum[4*j + 0] + 0.25f*sum[4*j + 1] + 0.0625*sum[4*j + 2] + 0.015625*sum[4*j + 3] - sum0[j]);
+ }
+ *s = sumf;
+
+}
+
+void quantize_row_q8_K64_ref(const float * x, block_q8_K64 * y, int64_t k) {
+
+ float * dptr = (float *)y;
+ auto qs = (int8_t *)(dptr + 4);
+#ifdef __ARM_NEON
+ static const uint8_t k_shuffle[16] = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60};
+ auto shuffle = vld1q_u8(k_shuffle);
+ float32x4_t max[4] = { };
+ for (int j = 0; j < k; j += 16) {
+ for (int i = 0; i < 4; ++i) {
+ auto val = vld1q_f32(x + j + 4*i);
+ val = vabsq_f32(val);
+ max[i] = vmaxq_f32(max[i], val);
+ }
+ }
+ float32x4_t vid[4];
+ for (int i = 0; i < 4; ++i) {
+ dptr[i] = vmaxvq_f32(max[i])/127;
+ float id = dptr[i] > 0 ? 1/dptr[i] : 0.f;
+ vid[i] = vdupq_n_f32(id);
+ }
+ int8x16x4_t q;
+ for (int j = 0; j < k; j += 16) {
+ for (int i = 0; i < 4; ++i) {
+ auto val = vld1q_f32(x + j + 4*i);
+ val = vmulq_f32(vid[i], val);
+ q.val[i] = vreinterpretq_s8_s32(vcvtnq_s32_f32(val));
+ }
+ auto qi = vqtbl4q_s8(q, shuffle);
+ vst1q_s8(qs, qi);
+ qs += 16;
+ }
+#elif defined __AVX__
+ __m128 max[4] = {};
+ __m128 sign_bit = _mm_set1_ps(-0.f);
+ for (int j = 0; j < k; j += 16) {
+ for (int i = 0; i < 4; ++i) {
+ auto val = _mm_loadu_ps(x + j + 4*i);
+ val = _mm_andnot_ps(sign_bit, val);
+ max[i] = _mm_max_ps(max[i], val);
+ }
+ }
+ __m128 vid[4];
+ for (int i = 0; i < 4; ++i) {
+ max[i] = _mm_max_ps(max[i], _mm_movehl_ps(max[i], max[i]));
+ max[i] = _mm_max_ss(max[i], _mm_movehdup_ps(max[i]));
+ float maxi = _mm_cvtss_f32(max[i]);
+ dptr[i] = maxi/127;
+ float id = dptr[i] > 0 ? 1/dptr[i] : 0.f;
+ vid[i] = _mm_set1_ps(id);
+ }
+ __m128i q[4];
+ for (int j = 0; j < k; j += 16) {
+ for (int i = 0; i < 4; ++i) {
+ auto val = _mm_loadu_ps(x + j + 4*i);
+ val = _mm_round_ps(_mm_mul_ps(vid[i], val), _MM_ROUND_NEAREST);
+ q[i] = _mm_cvtps_epi32(val);
+ }
+ auto q1 = _mm_packs_epi32(q[0], q[1]);
+ auto q2 = _mm_packs_epi32(q[2], q[3]);
+ auto qi = _mm_packs_epi16(q1, q2);
+ _mm_storeu_si128((__m128i *)qs, qi);
+ qs += 16;
+ }
+#else
+ float aux[4] = {0.f, 0.f, 0.f, 0.f};
+ for (int j = 0; j < k; j += 16) {
+ for (int i = 0; i < 4; ++i) {
+ for (int l = 0; l < 4; ++l) {
+ float ax = fabsf(x[j+4*i+l]);
+ aux[i] = std::max(aux[i], ax);
+ }
+ }
+ }
+ for (int i = 0; i < 4; ++i) {
+ dptr[i] = aux[i]/127;
+ aux[i] = dptr[i] > 0 ? 1/dptr[i] : 0.f;
+ }
+ for (int j = 0; j < k; j += 16) {
+ for (int i = 0; i < 4; ++i) {
+ for (int l = 0; l < 4; ++l) qs[j+4*i+l] = nearest_int(aux[i]*x[j+4*i+l]);
+ }
+ }
+#endif
+}
+
+void quantize_row_q8_K64(const float * x, void * y, int64_t k) {
+ quantize_row_q8_K64_ref(x, (block_q8_K64 *)y, k);
+}
+