summaryrefslogtreecommitdiff
path: root/ggml/src/iqk/iqk_quantize.cpp
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-10-13 13:34:30 +0300
committerGitHub <noreply@github.com>2024-10-13 13:34:30 +0300
commit910a13409463f7aedb0a92be013a1b9bb50f4859 (patch)
tree16e13e1fd3010549877408a0a62706b2bc5d5f0c /ggml/src/iqk/iqk_quantize.cpp
parentc15de3654e0002537c8052fd6d52d879e778e88c (diff)
IQ2_KS: 2.1875 bpw non-linear quantization (#85)
* Experimenting * iq2k: Try make_qx_quants for the scale Slightly better for LLaMA-3.1, Gemma-2, slightly worse for Qwen2.5 * iq2k with make_qx_quants: adjust scale * iq2ks: basics * iq2_ks: CUDA works * iq2_ks: WIP * iq2_ks: WIP * iq2_ks: Zen4 * iq2_ks: AVX2 * iq2_ks: scalar dot product * iq2_ks: ARM_NEON * iq2_ks: Metal * iq2_ks: faster Metal LLaMA-3.1-8B: PP-512 = 475.22 ± 0.37 t/s TG-128 = 45.32 ± 0.03 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/iqk/iqk_quantize.cpp')
-rw-r--r--ggml/src/iqk/iqk_quantize.cpp417
1 files changed, 406 insertions, 11 deletions
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp
index 430b629f..984801be 100644
--- a/ggml/src/iqk/iqk_quantize.cpp
+++ b/ggml/src/iqk/iqk_quantize.cpp
@@ -30,6 +30,50 @@ inline int nearest_int(float fval) {
return (i & 0x007fffff) - 0x00400000;
}
+float make_qx_quants(int n, int nmax, const float * x, int8_t * L, const float * qw) {
+ float max = 0;
+ float amax = 0;
+ for (int i = 0; i < n; ++i) {
+ float ax = fabsf(x[i]);
+ if (ax > amax) { amax = ax; max = x[i]; }
+ }
+ if (!amax) { // all zero
+ for (int i = 0; i < n; ++i) L[i] = 0;
+ return 0.f;
+ }
+ float iscale = -nmax / max;
+ float sumlx = 0;
+ float suml2 = 0;
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ l = std::max(-nmax, std::min(nmax-1, l));
+ L[i] = l + nmax;
+ sumlx += qw[i]*x[i]*l;
+ suml2 += qw[i]*l*l;
+ }
+ float scale = suml2 ? sumlx/suml2 : 0.0f;
+ float best = scale * sumlx;
+ for (int is = -9; is <= 9; ++is) {
+ if (is == 0) continue;
+ iscale = -(nmax + 0.1f*is) / max;
+ sumlx = suml2 = 0;
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ l = std::max(-nmax, std::min(nmax-1, l));
+ sumlx += qw[i]*x[i]*l;
+ suml2 += qw[i]*l*l;
+ }
+ if (suml2 > 0 && sumlx*sumlx > best*suml2) {
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ L[i] = nmax + std::max(-nmax, std::min(nmax-1, l));
+ }
+ scale = sumlx/suml2; best = scale*sumlx;
+ }
+ }
+ return scale;
+}
+
struct IQ1BNQuantizer {
int8_t L[QK_IQ1BN];
void quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix);
@@ -507,6 +551,8 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl
float scales[QK_K/kBlockSize];
float weight[kBlockSize];
float sumx[kBlockSize+1], sumw[kBlockSize+1];
+ float sw[QK_K/kBlockSize];
+ int8_t Ls[QK_K/kBlockSize];
std::array<std::pair<float,int>, kBlockSize> pairs;
@@ -524,7 +570,7 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl
uint16_t extra = 0;
- float max_abs_scale = 0;
+ float max_abs_scale = 0, max_scale = 0;
for (int ib = 0; ib < QK_K/kBlockSize; ++ib) {
const float * xb = xbl + kBlockSize*ib;
@@ -534,7 +580,11 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl
} else {
for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j];
}
- for (int j = 0; j < kBlockSize; ++j) pairs[j] = {xb[j], j};
+ sw[ib] = 0;
+ for (int j = 0; j < kBlockSize; ++j) {
+ sw[ib] += weight[j];
+ pairs[j] = {xb[j], j};
+ }
std::sort(pairs.begin(), pairs.end());
sumx[0] = sumw[0] = 0;
for (int j = 0; j < kBlockSize; ++j) {
@@ -583,21 +633,25 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl
if (is_shifted) extra |= (1 << ib);
float abs_scale = fabsf(scales[ib]);
- max_abs_scale = MAX(max_abs_scale, abs_scale);
+ if (abs_scale > max_abs_scale) {
+ max_abs_scale = abs_scale;
+ max_scale = scales[ib];
+ }
}
if (!max_abs_scale) continue;
+ float d = make_qx_quants(QK_K/kBlockSize, 8, scales, Ls, sw);
+ if (!d) continue;
- float d = max_abs_scale/15;
+ //float d = -max_scale/8;
y[ibl].extra = extra;
float id = 1/d;
float sumqx = 0, sumq2 = 0;
for (int ib = 0; ib < QK_K/kBlockSize; ++ib) {
- int ls = nearest_int(0.5f*(id*scales[ib]+15));
- ls = MAX(0, MIN(15, ls));
- y[ibl].scales[ib/2] |= (ls << 4*(ib%2));
- ls = 2*ls - 15;
+ int ls = nearest_int(id*scales[ib]);
+ ls = std::max(-8, std::min(7, ls));
+ y[ibl].scales[ib/2] |= ((ls + 8) << 4*(ib%2));
float dl = d * ls;
if (dl) {
const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq2nl_values;
@@ -623,7 +677,7 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl
}
}
}
- y[ibl].d = GGML_FP32_TO_FP16(1.025f*(sumq2 > 0 ? sumqx/sumq2 : d));
+ y[ibl].d = GGML_FP32_TO_FP16(1.030f*(sumq2 > 0 ? sumqx/sumq2 : d));
}
}
@@ -665,8 +719,8 @@ void dequantize_row_iq2_k(const block_iq2_k * GGML_RESTRICT x, float * GGML_RES
int shift = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
- float dl1 = d * (2*(x[i].scales[ib32] & 0xf) - 15);
- float dl2 = d * (2*(x[i].scales[ib32] >> 4) - 15);
+ float dl1 = d * ((x[i].scales[ib32] & 0xf) - 8);
+ float dl2 = d * ((x[i].scales[ib32] >> 4) - 8);
const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values;
const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values;
extra >>= 2;
@@ -701,6 +755,347 @@ void vec_dot_iq2_k_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void *
}
+namespace {
+void quantize_row_iq2_ks_impl(const float * x, void * vy, int n_per_row, const float * quant_weights, float * all_scales, float * all_sw, int8_t * all_Ls) {
+
+ constexpr int kBlockSize = 32;
+ constexpr int kMax_i1 = 3*kBlockSize/4;
+ constexpr int kMin_i3 = kBlockSize/4;
+ //constexpr int kNtry = 5;
+ //constexpr float kStep = 1.f;
+
+ ggml_half * dptr = (ggml_half *)vy;
+ *dptr = GGML_FP32_TO_FP16(0.f);
+
+ block_iq2_ks * y = (block_iq2_ks *)(dptr + 1);
+
+ float weight[kBlockSize];
+ float sumx[kBlockSize+1], sumw[kBlockSize+1];
+
+ std::array<std::pair<float,int>, kBlockSize> pairs;
+
+ float val [4] = {float(iq2nl_values[0]), float(iq2nl_values[1]), float(iq2nl_values[2]), float(iq2nl_values[3])};
+ float sval[4] = {float(iq2nl_values[4]), float(iq2nl_values[5]), float(iq2nl_values[6]), float(iq2nl_values[7])};
+
+ const int8_t * shifted_values = iq2nl_values + 4;
+
+ const int nblock = n_per_row/QK_K;
+
+ for (int ibl = 0; ibl < nblock; ++ibl) {
+
+ memset(&y[ibl], 0, sizeof(block_iq2_ks));
+
+ auto scales = all_scales + ibl*(QK_K/kBlockSize);
+ auto sw = all_sw + ibl*(QK_K/kBlockSize);
+
+ const float * xbl = x + ibl*QK_K;
+ float sumx2 = 0;
+ for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j];
+ const float sigma2 = 1.5f*sumx2/QK_K;
+
+ uint16_t extra = 0;
+
+ for (int ib = 0; ib < QK_K/kBlockSize; ++ib) {
+ const float * xb = xbl + kBlockSize*ib;
+ if (quant_weights) {
+ const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize;
+ for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
+ } else {
+ for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j];
+ }
+ sw[ib] = 0;
+ for (int j = 0; j < kBlockSize; ++j) {
+ sw[ib] += weight[j];
+ pairs[j] = {xb[j], j};
+ }
+ //float amax = 0, max = 0;
+ //for (int j = 0; j < kBlockSize; ++j) {
+ // float ax = fabsf(xb[j]);
+ // if (ax > amax) {
+ // amax = ax; max = xb[j];
+ // }
+ //}
+ //if (!amax) {
+ // scales[ib] = 0;
+ // continue;
+ //}
+ //float d = kNtry > 0 ? -max/iq2nl_values[0] : max/iq2nl_values[0];
+ //float id = 1/d;
+ //float sumqx_p = 0, sumq2_p = 0;
+ //float sumqx_m = 0, sumq2_m = 0;
+ //for (int j = 0; j < kBlockSize; ++j) {
+ // float w = weight[j];
+ // float al = id*xb[j];
+ // int l = best_index_iq2nl(iq2nl_values, al);
+ // float q = iq2nl_values[l];
+ // sumqx_p += w*q*xb[j];
+ // sumq2_p += w*q*q;
+ // l = best_index_iq2nl(iq2nl_values, -al);
+ // q = iq2nl_values[l];
+ // sumqx_m += w*q*xb[j];
+ // sumq2_m += w*q*q;
+ //}
+ //d = sumqx_p/sumq2_p;
+ //float best = d*sumqx_p;
+ //if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) {
+ // d = sumqx_m/sumq2_m; best = d*sumqx_m;
+ //}
+ //bool is_shifted = false;
+ //for (int itry = -kNtry; itry <= kNtry; ++itry) {
+ // id = (kStep*itry + iq2nl_values[0])/max;
+ // sumqx_p = sumq2_p = 0;
+ // sumqx_m = sumq2_m = 0;
+ // for (int j = 0; j < kBlockSize; ++j) {
+ // float w = weight[j];
+ // float al = id*xb[j];
+ // int l = best_index_iq2nl(iq2nl_values, al);
+ // float q = iq2nl_values[l];
+ // sumqx_p += w*q*xb[j];
+ // sumq2_p += w*q*q;
+ // l = best_index_iq2nl(iq2nl_values, -al);
+ // q = iq2nl_values[l];
+ // sumqx_m += w*q*xb[j];
+ // sumq2_m += w*q*q;
+ // }
+ // if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) {
+ // d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false;
+ // }
+ // if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) {
+ // d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false;
+ // }
+ // id = (kStep*itry + shifted_values[0])/max;
+ // sumqx_p = sumq2_p = 0;
+ // sumqx_m = sumq2_m = 0;
+ // for (int j = 0; j < kBlockSize; ++j) {
+ // float w = weight[j];
+ // float al = id*xb[j];
+ // int l = best_index_iq2nl(shifted_values, al);
+ // float q = shifted_values[l];
+ // sumqx_p += w*q*xb[j];
+ // sumq2_p += w*q*q;
+ // l = best_index_iq2nl(shifted_values, -al);
+ // q = shifted_values[l];
+ // sumqx_m += w*q*xb[j];
+ // sumq2_m += w*q*q;
+ // }
+ // if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) {
+ // d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true;
+ // }
+ // if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) {
+ // d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true;
+ // }
+ //}
+ std::sort(pairs.begin(), pairs.end());
+ sumx[0] = sumw[0] = 0;
+ for (int j = 0; j < kBlockSize; ++j) {
+ int jj = pairs[j].second;
+ sumw[j+1] = sumw[j] + weight[jj];
+ sumx[j+1] = sumx[j] + weight[jj]*xb[jj];
+ }
+ float best = 0, d = 0;
+ bool is_shifted = false;
+ float sumqx, sumq2;
+ for (int i1 = 0; i1 < kMax_i1; ++i1) {
+ for (int i2 = i1; i2 < kBlockSize; ++i2) {
+ for (int i3 = std::max(i2, kMin_i3); i3 < kBlockSize; ++i3) {
+ sumqx = (sumx[i1] - sumx[ 0])*val[0] + (sumx[i2] - sumx[i1])*val[1]
+ + (sumx[i3] - sumx[i2])*val[2] + (sumx[kBlockSize] - sumx[i3])*val[3];
+ sumq2 = (sumw[i1] - sumw[ 0])*val[0]*val[0] + (sumw[i2] - sumw[i1])*val[1]*val[1]
+ + (sumw[i3] - sumw[i2])*val[2]*val[2] + (sumw[kBlockSize] - sumw[i3])*val[3]*val[3];
+ if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
+ d = sumqx/sumq2; best = d*sumqx; is_shifted = false;
+ }
+ sumqx = (sumx[i1] - sumx[ 0])*sval[0] + (sumx[i2] - sumx[i1])*sval[1]
+ + (sumx[i3] - sumx[i2])*sval[2] + (sumx[kBlockSize] - sumx[i3])*sval[3];
+ sumq2 = (sumw[i1] - sumw[ 0])*sval[0]*sval[0] + (sumw[i2] - sumw[i1])*sval[1]*sval[1]
+ + (sumw[i3] - sumw[i2])*sval[2]*sval[2] + (sumw[kBlockSize] - sumw[i3])*sval[3]*sval[3];
+ if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
+ d = sumqx/sumq2; best = d*sumqx; is_shifted = true;
+ }
+ sumqx = (sumx[i1] - sumx[ 0])*val[3] + (sumx[i2 ] - sumx[i1])*val[2]
+ + (sumx[i3] - sumx[i2])*val[1] + (sumx[kBlockSize] - sumx[i3])*val[0];
+ sumq2 = (sumw[i1] - sumw[ 0])*val[3]*val[3] + (sumw[i2 ] - sumw[i1])*val[2]*val[2]
+ + (sumw[i3] - sumw[i2])*val[1]*val[1] + (sumw[kBlockSize] - sumw[i3])*val[0]*val[0];
+ if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
+ d = sumqx/sumq2; best = d*sumqx; is_shifted = false;
+ }
+ sumqx = (sumx[i1] - sumx[ 0])*sval[3] + (sumx[i2 ] - sumx[i1])*sval[2]
+ + (sumx[i3] - sumx[i2])*sval[1] + (sumx[kBlockSize] - sumx[i3])*sval[0];
+ sumq2 = (sumw[i1] - sumw[ 0])*sval[3]*sval[3] + (sumw[i2 ] - sumw[i1])*sval[2]*sval[2]
+ + (sumw[i3] - sumw[i2])*sval[1]*sval[1] + (sumw[kBlockSize] - sumw[i3])*sval[0]*sval[0];
+ if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
+ d = sumqx/sumq2; best = d*sumqx; is_shifted = true;
+ }
+ }
+ }
+ }
+ scales[ib] = d;
+ if (is_shifted) extra |= (1 << ib);
+
+ }
+ y[ibl].extra = extra;
+
+ }
+
+ float d = make_qx_quants(nblock*(QK_K/kBlockSize), 16, all_scales, all_Ls, all_sw);
+
+ if (!d) return;
+
+ float sumqx = 0, sumq2 = 0;
+ for (int ibl = 0; ibl < nblock; ++ibl) {
+ auto xbl = x + ibl*QK_K;
+ float sumx2 = 0;
+ for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j];
+ const float sigma2 = 1.5f*sumx2/QK_K;
+ auto Ls = all_Ls + ibl*(QK_K/kBlockSize);
+ for (int ib = 0; ib < QK_K/kBlockSize; ++ib) {
+ int ls = Ls[ib];
+ y[ibl].scales[ib/2] |= ((ls & 0xf) << 4*(ib%2));
+ y[ibl].extra |= ((ls >> 4) << (8 + ib));
+ ls -= 16;
+ float dl = d * ls;
+ if (dl) {
+ const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq2nl_values;
+ const float * xb = xbl + kBlockSize*ib;
+ if (quant_weights) {
+ const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize;
+ for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
+ } else {
+ for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j];
+ }
+ float idl = 1/dl;
+ uint8_t * qs = y[ibl].qs + 32*(ib/4);
+ for (int j = 0; j < 32; ++j) {
+ const float al = idl*xb[j];
+ int ibest = best_index_iq2nl(block_values, al);
+ qs[j] |= (ibest << 2*(ib%4));
+ float w = weight[j];
+ float q = block_values[ibest]*ls;
+ sumqx += w*q*xb[j];
+ sumq2 += w*q*q;
+ }
+ }
+ }
+ }
+ *dptr = GGML_FP32_TO_FP16(1.030f*(sumq2 > 0 ? sumqx/sumq2 : d));
+}
+}
+
+void quantize_row_iq2_ks_ref(const float * GGML_RESTRICT x, block_iq2_ks * GGML_RESTRICT y, int64_t k) {
+ assert(k % QK_K == 0);
+ quantize_iq2_ks(x, (void *)y, 1, k, nullptr);
+}
+
+void quantize_row_iq2_ks(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
+ assert(k % QK_K == 0);
+ block_iq2_ks * y = (block_iq2_ks *)vy;
+ quantize_row_iq2_ks_ref(x, y, k);
+}
+
+size_t quantize_iq2_ks(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) {
+ constexpr int kBlockSize = 32;
+ GGML_ASSERT(n_per_row%QK_K == 0);
+ auto row_size = ggml_row_size(GGML_TYPE_IQ2_KS, n_per_row);
+ int nblock = n_per_row/QK_K;
+ std::vector<float> all_scales(nblock*(QK_K/kBlockSize)), all_sw(nblock*(QK_K/kBlockSize));
+ std::vector<int8_t> all_Ls(nblock*(QK_K/kBlockSize));
+ char * qrow = (char *)dst;
+ for (int64_t row = 0; row < nrows; ++row) {
+ quantize_row_iq2_ks_impl(src, (void *)qrow, n_per_row, imatrix, all_scales.data(), all_sw.data(), all_Ls.data());
+ src += n_per_row;
+ qrow += row_size;
+ }
+ return nrows * row_size;
+}
+
+void dequantize_row_iq2_ks(const block_iq2_ks * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ const ggml_half * dptr = (const ggml_half *)x;
+ const float d = GGML_FP16_TO_FP32(*dptr);
+ x = (const block_iq2_ks *)(dptr + 1);
+
+ for (int i = 0; i < nb; i++) {
+
+ const uint8_t * qs = x[i].qs;
+
+ uint16_t extra = x[i].extra;
+
+ int shift = 0;
+ for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
+ float dl1 = d * (((x[i].scales[ib64] & 0xf) | ((extra >> 4) & 0x10)) - 16);
+ float dl2 = d * (((x[i].scales[ib64] >> 4) | ((extra >> 5) & 0x10)) - 16);
+ const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values;
+ const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values;
+ extra >>= 2;
+ for (int j = 0; j < 32; ++j) {
+ y[j+ 0] = dl1 * values1[(qs[j] >> (shift+0)) & 3];
+ y[j+32] = dl2 * values2[(qs[j] >> (shift+2)) & 3];
+ }
+ y += 64;
+ shift += 4;
+ if (shift == 8) { qs += 32; shift = 0; }
+ }
+
+ }
+
+}
+
+void vec_dot_iq2_ks_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) {
+ assert(n % QK_K == 0);
+ assert(nrc == 1);
+ GGML_UNUSED(nrc);
+ GGML_UNUSED(bx);
+ GGML_UNUSED(by);
+ GGML_UNUSED(bs);
+
+#if GGML_USE_IQK_MULMAT
+ if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_KS, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) {
+ return;
+ }
+#endif
+
+ const ggml_half * dptr = (const ggml_half *)vx;
+ const float d = GGML_FP16_TO_FP32(*dptr);
+ const block_iq2_ks * x = (const block_iq2_ks *)(dptr + 1);
+ const block_q8_K * y = (const block_q8_K *)vy;
+
+ const int nb = n / QK_K;
+ float sumf = 0;
+ for (int i = 0; i < nb; i++) {
+ const uint8_t * qs = x[i].qs;
+ const int8_t * q8 = y[i].qs;
+ uint16_t extra = x[i].extra;
+ int sumi = 0;
+ for (int ib128 = 0; ib128 < QK_K/128; ++ib128) {
+ int d1 = (((x[i].scales[2*ib128+0] & 0xf) | ((extra >> 4) & 0x10)) - 16);
+ int d2 = (((x[i].scales[2*ib128+0] >> 4) | ((extra >> 5) & 0x10)) - 16);
+ int d3 = (((x[i].scales[2*ib128+1] & 0xf) | ((extra >> 6) & 0x10)) - 16);
+ int d4 = (((x[i].scales[2*ib128+1] >> 4) | ((extra >> 7) & 0x10)) - 16);
+ const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values;
+ const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values;
+ const int8_t * values3 = extra & 4 ? iq2nl_values + 4 : iq2nl_values;
+ const int8_t * values4 = extra & 8 ? iq2nl_values + 4 : iq2nl_values;
+ extra >>= 4;
+ int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0;
+ for (int j = 0; j < 32; ++j) {
+ sumi1 += q8[j+ 0] * values1[(qs[j] >> 0) & 3];
+ sumi2 += q8[j+32] * values2[(qs[j] >> 2) & 3];
+ sumi3 += q8[j+64] * values3[(qs[j] >> 4) & 3];
+ sumi4 += q8[j+96] * values4[(qs[j] >> 6) & 3];
+ }
+ sumi += d1*sumi1 + d2*sumi2 + d3*sumi3 + d4*sumi4;
+ q8 += 128;
+ qs += 32;
+ }
+ sumf += y[i].d * sumi;
+ }
+
+ *s = d * sumf;
+
+}
+
//
// ============================================== iq3_k
//