diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-08-07 07:56:09 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-08-07 07:56:09 +0200 |
commit | a9f302ebe2373321c12b01d8760904901aa064a4 (patch) | |
tree | 7953bbff2ebd6bf9130cea52d17995aea3cd65d5 /ggml/src/iqk/iqk_quantize.cpp | |
parent | b409c153636d27473970abd3a9c9400b6287d400 (diff) |
Adding IQ2_TN for use with ternary models (#13)
* iq2_tn: TriLM specific 2.0625 bpw quantization
Quantize/dequantize/scale dot product.
I get 46 t/s for the TriLM-3.9B with any SIMD!
Finally a compiler doing a decent job auto-vectorizing the
scalar implementation.
* iq2_tn: AVX512
Just reusing the k-quants template gets us to PP-512 = 376 t/s,
TG-128 = 47.6 t/s for TriLM-3.9B.
* iq2_tn: AVX512
With this tweak we get to PP-512 = 431 t/s.
* iq2_tn: AVX512
With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads.
At 4 threads we saturate at 48.41 t/s, and then performance slowly
degrades with increasing number of threads.
* iq2_tn: AVX2
PP512 = 440 t/s on the Ryzen-5975WX.
We should be able to do better.
* iq2_tn: initial NEON version
* iq2_tn: NEON
For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s,
TG-128 = 75.5 t/s. This is in line with what we have for
iq2_bn ant 3.3B Bitnet.
* iq2_tn: Metal
For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s,
TG-128 = 98.5 t/s.
* iq2_tn: CUDA
For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s,
TG-128 = 299.2 t/s.
* iq2_tn: AVX2 PP improvement
We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX.
We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn.
Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would
expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something
that is not quite optimal in iq2_tn.
* iq2_tn: small NEON improvement
For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/iqk/iqk_quantize.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 107 |
1 files changed, 107 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index c840fabf..1cba1532 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -1514,3 +1514,110 @@ size_t quantize_iq5_k(const float * src, void * dst, int64_t nrows, int64_t n_pe } return nrows * nblock * sizeof(block_iq5_k); } + +// +// ========================== IQ2_TN +// + +void quantize_row_iq2_tn_ref(const float * x, block_iq2_tn * y, int64_t k) { + GGML_ASSERT(k%QK_K == 0); + + int nb = k/QK_K; + + auto quantize = [] (float xmax, float x) { + return x < -0.5f*xmax ? 0 : x < 0.5f*xmax ? 1 : 2; + }; + + for (int ibl = 0; ibl < nb; ++ibl) { + auto xb = x + QK_K*ibl; + float max = xb[0]; + for (int j = 0; j < QK_K; ++j) { + float ax = fabsf(xb[j]); + max = std::max(ax, max); + } + y[ibl].d = GGML_FP32_TO_FP16(max); + auto qs = y[ibl].qs; + for (int l = 0; l < QK_K/128; ++l) { + for (int j = 0; j < 32; ++j) { + qs[j] = quantize(max, xb[j]) | (quantize(max, xb[j+32]) << 2) | (quantize(max, xb[j+64]) << 4) | (quantize(max, xb[j+96]) << 6); + } + xb += 128; + qs += 32; + } + } +} + +void quantize_row_iq2_tn(const float * x, void * y, int64_t k) { + quantize_row_iq2_tn_ref(x, (block_iq2_tn *)y, k); +} + +size_t quantize_iq2_tn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * /*imatrix*/) { + auto row_size = ggml_row_size(GGML_TYPE_IQ2_TN, n_per_row); + char * qrow = (char *)dst; + for (int row = 0; row < nrows; ++row) { + quantize_row_iq2_tn_ref(src, (block_iq2_tn *)qrow, n_per_row); + qrow += row_size; + src += n_per_row; + } + return row_size*nrows; +} + +void dequantize_row_iq2_tn(const block_iq2_tn * x, float * y, int64_t k) { + GGML_ASSERT(k%QK_K == 0); + int nb = k/QK_K; + for (int ibl = 0; ibl < nb; ++ibl) { + float d = GGML_FP16_TO_FP32(x[ibl].d); + auto qs = x[ibl].qs; + for (int l = 0; l < QK_K/128; ++l) { + for (int j = 0; j < 32; ++j) { + y[j+ 0] = d*((qs[j] >> 0) & 3) - d; + y[j+32] = d*((qs[j] >> 2) & 3) - d; + y[j+64] = d*((qs[j] >> 4) & 3) - d; + y[j+96] = d*((qs[j] >> 6) & 3) - d; + } + y += 128; + qs += 32; + } + } +} + +void vec_dot_iq2_tn_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + GGML_UNUSED(nrc); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(bs); + + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_TN, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } + + const int nb = n / QK_K; + + const block_iq2_tn * x = (const block_iq2_tn *)vx; + const block_q8_K * y = (const block_q8_K *)vy; + + float sumf = 0; + + for (int i = 0; i < nb; i++) { + float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + auto qs = x[i].qs; + auto q8 = y[i].qs; + int sumi1 = 0, sumi2 = 0, sumi3 = 0,sumi4 = 0; + for (int j = 0; j < QK_K/16; ++j) sumi1 -= y[i].bsums[j]; + for (int l = 0; l < QK_K/128; ++l) { + for (int j = 0; j < 32; ++j) { + sumi1 += q8[j+ 0] * (qs[j] & 0x03); + sumi2 += q8[j+32] * (qs[j] & 0x0c); + sumi3 += q8[j+64] * (qs[j] & 0x30); + sumi4 += q8[j+96] * (qs[j] & 0xc0); + } + q8 += 128; + qs += 32; + } + sumf += d * (sumi1 + 0.25f*sumi2 + 0.0625f*sumi3 + 0.015625f*sumi4); + } + *s = sumf; +} + |